DETECT INVALID MEMORY ACCESSES

Lt

ing T1.access-
has been using
a customer who
- Feedback from

predictor in several projects

T1.accessPredictor makes it possible to detect access violations before the soft-
ware runs on the target hardware

Upset by MPU exceptions in the field? Tracking them down while
the software executes can be very time consuming and costly.
T1.accessPredictor allows you to check for any memory access

violations before even flashing the software. Think of it as an
“off-line MPU".

Analyzing the binary rather than the source code has significant advantages

e |tis a long way from the source code to the binary and assu- \
ming that no additional accesses were injected by the compiler ELE

and linker is a critical assumption in a safety-relevant context. au

\T

e C source analysis also omits any assembler code.
[T E no
e What's more today's ECUs incorporate software components S
from various parties. None of them has a full view on 100% of i
the sources so a complete analysis is impossible when perfor-
ming source code analysis.

o .
= _ B /i
S R il
il T ="
— 1 B el
el = .
= DS) | e,
s "-'ﬁ";: bk 7 M
|"-' |I:_.\,

::‘J—F;I_.__._-;-" .
v P

Using T1.accessPredictor is very simple; there are only a few steps to take

Step 1: Specify the different access classes using the intuitive GUI, add symbols/sections/memory areas and
define in which way (Read, Write and eXecute) every class may access the other classes. "Execute” refers to
code accesses such as function-calls. In the example, four access-classes were defined: ASIL_A, ASIL_D, QM
and Flash.

@ TacoenPredictor Ao Class TR o ><
Et Classes Sy Sechors and Symbois Erlt ariean ranges
!] Syl yowch L] a3 =]
E Yoo S
sy Mame Sodtora arvd Syrikohy St pdresy Lengn
A5 Secten et A cen TASK_ASIL_D D FOOC000 w50
At A - s s S 451D
i} —
ik debug sble || aDO000 | OB o
detagy e || OeDDO0D_ D3R4 TRARERLAAY
dabuag Wl D000 - Oe0CE
dabesy bk D000 | | CxEAF
kg o X 2
detug g De R = g <
nolg D000 OcTln
rigin _ER | OeRl00 Owd ' .
shaivis | Os0(00. . Ov30a \\‘
i | oo | Gvee
el | De00D0.. nAZ0
| OeB0000 x14
el e | B0 Gx16 ey
g k| [
L it £l DuBO000 (G130 W
Accem fuses
=% =
2 3 8 &
ASI T FWE [FWE AWK R
AL (WP s
o = AR Awe R |
o =]

Step 2: Readinthe binary, the ELF file. T1.accessPredictor will disassemble the binary and perform a static analysis
based on abstract interpretation. Afterwards T1.accessPredictor presents a “bi-directional” call-tree indicating
a) which function calls which other functions and b) by which other functions a function gets called.

Step 3: If necessary, add annotations (manually, generated or measurement-based) to complete the call-tree.
Step 4: Analyze the results! The call-tree indicates access violations with red exclamation marks: for invalid data
accesses and for invalid code accesses.

System: Core 0 - Conrfigure Access Classes Show Ann
Function Names F Data Accesses Code Accesses Call Address Access Class e S
E-main &t (&L ~ (x800003A6 ASIL_D. Flash __void TASK ASIL A()
E+TASK_ASIL_A oF m v («B00D03EC ASIL_A, Flash Bt sysr ASTL 2
| -RUNNABLE_ASIL_D T [(x3000000C ASIL_D. Flash - it
A = — RUNNABLE ASIL D(): /* Not allowed */
- TASK_ASIL_D & @ ¥ (B000037A ASIL_D, Flash L, ASIL D(); /* Not allowe
| L RUNNABLE_ASIL_D v (x3000000C ASIL_D, Flash
I S N [void TASK QM ()
=R
Data Accesses for selected function Callers for selected function ++wvar OM:
;] . : ++var ASIL D; /* Not allowed */
Data Address Data Symbol Read | Wite S STMO CLC = 0x12345678; /* Not allowed */
(xD000000D var_ASIL_D 8 @ " —3
«FDO00DDD UNKNOWN] :
«80000008 UNKNOWN &
0xD0000008 var_ QM oF &

Step 5 (optional): Export the results for regression tests for subsequent software releases.

GLIWA GmbH & Co. KG fon +49 - 881-138522 -0

Pollinger Str. 1 gliwa.com fax +49 - 881 - 13 85 22 - 99
82362 Weilheim i.OB. | Germany mail: info@gliwa.com

