TAW FRATE

SEMSOR
SEMSOF SEMSOR

AMGLE

i

|

T5 - L

tor control s =
. PP td,?f;/“ L P o O, O R
'y, g

with many more timing requirements, all competing for network

\ ELECTRIC

The active steering shown in the figure demonstrates what

embedded timing is about. The system consists of sensors,
ECUs, busses and an actuator. With the vehicle dynamics mo-
del of the car and the active steering function on his mind, the
functional developer defined a minimum reaction time for the
complete chain, here 30ms. This becomes a top level (= net-
work-level) end-to-end timing requirement for the system. This
timing requirement then gets decomposed, i.e. it gets sliced into
smaller portions T,...T5, one portion for each component of the
system. Obviously, ECUs and busses handle many more features

and computation resources. On an ECU with tasks/interrupts
and their runnables, the top level timing requirements are bro-
ken down into more fine grained timing requirements and the
competition for resources is continued on a lower level.

Timing analysis helps planning, understanding, optimizing
and securing embedded systems with respect to their timing.
This poster sheds a light on the various aspects of embedded
timing and timing analysis techniques.

mTIMING ANALYSIS: LEVELS AND DEVELOPMENT PHASES

LEVYEL

/

'} s
HIGH —]
L /& _ Focus:

.\ rocws: SCheduling effects

\ Focus: Core execution time

Code level

Lol

Integration

\ 4

EARLY
FHAZE

INTEGRATIOM
FHASE

DEVYELOFMERMT
FROCESZ

EMBEDDED TIMING

IN THE DEVELOPMENT PROCESS

Use cases are very different depending on where in the deve-
lopment process they are located. In a very early phase of a

Any timing-related activity, problem or use-case can be
placed in a diagram with two dimensions: the level and the
development phase.

NETWORK LEVEL, RTOS LEVEL, CODE LEVEL
The Network level deals with inter ECU communication
aspects and end-to-end-timing. Most Network level timing
experts are found at the OEMs; they integrate several ECUs

project for example, most of the source code is not available
yet, making it impossible to measure, trace or perform static
code analysis. The key tasks for timing analysis in the various
phases are:

mTIMING ANALYSIS TECHNIQUES

TIMING ANALYSIS
TECHNIQUES [3]

Static code analysis
Code simulation

Tracing/Measurement
Scheduling simulation

Scheduling analysis

INPUT (DATA)

Source code and/or binary
Binary

Instrumented SW or probed HW

CETs, application model
(scheduler configuration)

BCET/WCET, application model
(scheduler configuration)

Real BCET eal' W
FROE -
AEILITY
A

core
execution
time

i ZET

Upper and lower bo

und for the CET

determined by static code analysis

Indepen

of scheduling

Static code
analysis

1lds
lds
add
adc
sts
sts

Fine grained

dent

Code
simulation

r24, 0x0068
r25, 0x0069
r24, r20
r25, r21l

0x0071, r25
0x0070, r24

INPUT (MODEL) OR MAIN OUTPUT

MECHANISM OR USE
Processor model Guaranteed BCET/WCET
Processor model CET according to test case

Timing information
according to test case

WCRT

Events are logged into a trace buffer
Scheduler model

Scheduler model Guaranteed WCRT

STATIC CODE ANALYSIS

Static code analysis timing tools read the source code and/or
the binary code of an application or part of it. They calculate
a lower limit for the BCET and the upper bound for the
WCET for a given code fragment, e.g. a function. Any real
core execution time is guaranteed to be within this interval,
as long as this fragment is not interrupted. Any data present
only at run-time (e.g. upper bounds on the loop iterations
and the content of dynamic function pointers) has to be
provided manually in the form of additional annotations.

Tracing/
Measurement

Tracing/
Measurement

TASK (mylmsTask)

{
CalcV () ;
WrPort () ;
TerminateTask () ;

granularity

CODE SIMULATION
Code simulators simulate the execution of given binary code
for a certain processor. A wide variety of code simulators
exist. Simple instruction set simulators provide very limited
information about the execution time whereas complex
simulators consider also pipeline- and cache-effects. To
achieve reliable WCET information from a code simulator, it
has to be embedded into a test environment which actually
causes the worst case to be simulated.

SCHEDULING ANALYSIS

Based on the model of a certain scheduler (e.g. a certain
RTOS), scheduling analysis tools take minimum/maximum
core execution times and an application model as input and
provide e.g. the guaranteed WCRT. This allows checking
whether any deadlines will be missed under the given
conditions. For each task's and interrupt's worst case, a trace
is generated allowing to analyze the run time situation under
which it occurs. The execution times fed into the analysis can
be either budgets, estimations, or outputs from other tools, e.g.
statically analyzed BCET/WCET or traced/measured data [4].

MEASUREMENT

The real system is analyzed and the observed timing
information is provided. Timing measurement is often based
on hook routines which are invoked by the RTOS.

g analysis
techniques ..

Dependent
on scheduling

g analysis

Scheduling Static scheduling
simulation analysis
ELE=S 1 ECU =
ECU 1 EUS =
ECU =

coarse grained (high level)

TRACING
Tracing observes the real system. For dedicated events, time
stamps together with event information is placed in a trace
buffer. The selection of events can be very fine grained like
for flow traces which allow reconstructing the execution

of each machine instruction or coarse grained like when
tracing scheduling related events only. Tracing can base on
instrumentation (i.e. software modification) or on special
tracing hardware. Traces can be visualized and analyzed
offline, e.g. for debugging purposes. All kinds of timing
information can be extracted from a trace [5].

SCHEDULING SIMULATION

Scheduling simulators provide similar functionality as the
scheduling analysis. Instead of calculating the results, they
simulate run time behavior. The observed timing information
and generated traces are the main output. If the worst case
scenarios are simulated, the observed response times will
equal the WCRTs. Some simulators allow Task definitions in C
language so that complex applications models are supported
while offering a specification language well known to
automotive engineers.

mSTANDARDS

AUTOSAR TIMING EXTENSIONS

With AUTOSAR V4.0, the Timing Extensions have been
introduced allowing the definition of timing require-
ments. In the first step, events like “start of runnable R“
or “reception of data D" are defined. In a second step,
requirements related to the events are formulated.
Example 1: After the start of runnable A, the reception
of data D must not occur later than 2.5ms. Example 2:
events E1, E2, E4, E7 must always occur in this order [6].

OT1

As of early 2013, there is no standard for timing informa-
tion interchange between timing tools. OT1 is a new and
unified data exchange format which we propose to be
used by all kinds of timing related tools. OT1 comes as
an XML format and allows the exchange of:

e System configuration (tasks, priorities, runnables, etc.)

* Traces (log of e.g. scheduling related events)

e Timing information (core execution time, response

times, etc.), also referred to as “timing guarantees”

e Timing requirements (e.g. max. allowed response times)
All timing information related to a project is held in one
big OT1 container and any timing related tool can ret-
rieve and/or provide information. It is even possible to

SAFETY & AVAILABILITY

The safety and availability of a system are competing
requirements. A system can enter a “fail safe” state by
withdrawing availability. Taken to its logical conclusion,
the safest system does nothing at all. However, such a
system will not be commercially successful.

A failure to adhere to strict timing requirements will
cause a well-protected, safe system to enter a fail safe
state, meeting its safety requirements but offering little
or no functionality. One task that slightly overruns might
cause every function on its ECU to be withdrawn. In the
context of safe systems, good timing behavior is therefo-
re essential to maintain availability.

During the development process of such a safe system,
timing errors can be very difficult to analyze and debug,
since the timing protection takes over and stops opera-
tions. Only with suitable tools can timing behavior prior
to such a shut-down be reconstructed and analyzed.

STANDARDS ADDRESSING SAFETY ASPECTS
There is no safety standard specific to embedded timing.
However, the standards listed below require the iden-
tification of functional and non-functional hazards and
the demonstration that the software does not violate the
relevant safety goals. These standards mention explicitly
three important non-functional, safety-relevant, software
characteristics: Absence of runtime errors, execution time
and memory consumption [7].

STANDARD SAFETY COMMENTS
LEVEL
Lowest Highest
SILT SiL4 Depreciated general
IEC-61508 (i.e. not specific to

automotive) standard
for functional safety

IEC-61508 Edition 2.0 SI/L7 SiL4 Successor of IEC-61508
150-26262 - fﬁiﬁiﬁ%ﬁﬁe&p’ﬂésas
DO-178B Level E Level A jﬁg% Csstandard for
DO-178C Level E Level A Successor of DO-178B
CENELEC prEN 50128 SILT SiL4 f:ir;igystandard for

LEGAL ASPECTS AND LIABILITY

In the worst case, people might be killed as the result of
a timing problem. It is not clearly defined how such cases
are treated in court but the producer of the ECU which
caused the accident will be asked whether the software
was tested/verified according to the state-of-practice.
The State-of-the-art is defined by research and becomes
state-of-practice when applied repeatedly in production
projects. So with respect to liability, projects should at

connected to various networks in one E/E platform for one * early phase: determine timing requirements and design Opcode Machine Basic Function Runnable Task ECU Network request absent information. A SChe.duling analysis toql least make use of the state-of-practice.
vehicle. a timing layout which fulfils the requirements; define States Instruction Block ISR (ECUs, buses) e.g. can reqli)est _tie CET of a Zegfa'n runrlable alnd this
: . : appropriate hardware (e.g. select processor); start request can be either answered by a tracing tool or a mM ULTICORE
e ok Ievel_ con5|de_rs J 1°11< scheduling entity implementation I Code level i static code analysis tool. Since all information is tagged —————
S RIS Core processor) and focuses e integration phase: finalize implementation; integrate ode feve with its source, managing diverse sources for the same
on scheduling effects. Most RTOS level timing experts are & P ' P INies : RTOS level — Network level — ’ ging Multicore development presents significant additional

components into a working environment; debug and
optimize timing; measure timing and relate results to B -
requirements; validate models

kind of data becomes very easy.

found at the tier-1s; the tier-1 typically integrates all software) .
See www.gliwa.com/ot1 for more details.

components into the ECU and also configures the operating

challenges. The list below outlines the key aspects.
Code level

system. . . ise timing: . e Shared bus/memory conflicts (e.g. n cores fetchin
_ late phase: measure and supervise timing; perform FROM SWCs TO RUNNABLES TO TASKS TO EXECUTION CPU-LOAD / BUS-LOAD y (cg 8
The Code level focuses on a fragment of code (e.g. a single timing tests (can be done in parallel to functional tests); ANALYSIS EE EiMULATION code from the same FLASH)
function) independently of scheduling. The (core) execution use model based approaches to cover corner cases and » Different CETs for the same function on different
time is the most important code level result. perform formal verification TASK STATES AND TRANSITIONS AUTOSAR software components (SWC) CPU-load and bus-load are the most important characteris- ‘\ ‘ I/\ cores (this becomes relevant when using dynamic
encapsulate a defined functionality, e.g. tics of timing. They compress the complex timing issue into task allocation)
- idle speed control of an engine manage- one single number which is perfect for management reports. » RTOS level
r _ L _ R R ' _ - - L. . : . . .
USE-CASES AND TIMING PROBLEMS Resumption _ ===~ "Pll ~ - Jermination ment ECU. A SWCis implemented with However, they are too S'mpole to capture all timing characte _ TIMING TooL3 OT1 = e Dynamic task allocation with increased scheduling
. N runnables which have certain scheduling, ristics, e.g. an ECU with 40% CPU-load can still easily violate E.G. DATA COLLECTOR N : -
e o : \ - . : —. : — N overhead due to migration costs
, ,/Prea,}npﬁon '. 1 safety and timing requirements. The idle timing constraints. f =9 8 e Too much use of OS mutex services auickly leads to
USE CASE OR PROBLEM I2 POSSIBLE SOLUTION 1 k p ': v speed control e.g. could be coded in three When stating CPU-load and bus-load, it should be made /’ —_— sLre)
[2] ! I oor performance (even worse than sin Ie-core)
i " u i / : . bles: IdleSpeedinit, IdleSpeed10ms and clear how these are defined: P P &
* Use a trace solution that allows “post mortem* analysis Ready S e Terminated runnables: p ' p : ol o o Not h £OS mut ices is likelv t
Sporadic system crashes e Use scheduling analysis or scheduling simulation for reconstructing the problem. However, the cause FRIORITY o / Activation . IdleSpeed50ms. As part of the RTOS configu- e What is the reference time frame? <.~ DATAEBASE TIMING TOOL A 0 _en(_)ug use o mu'ex SErVICES IS lIkely 1o re-
of sporadic system crashes are typically unknown so that it is unlikely to be present in the model. A e e ! ration, all runnables get mapped to tasks or * How is the background task considered (if present)? R e sult in timing-related functional defects
Sporadic data inconsistencies ife “Sporadic system crashes”. Differences: a) “post mortem* capability not necessary and / P / interrupts which match their requirements. e Is the RTOS overhead considered correctly? e . : 1 e Static task allocation can lead to poor performance
choose a trace solution that allows a joint view of data accesses and scheduling events ; “ [' i In th ti ituati h in the fi Most i tantly. the.CRllcERABNENE T el TIMING ToOOL =2 . = due to poor use of some cores
Model validati o Use scheduling tracing for scheduling analysis or scheduling simulation model verification Task 2ms : > 'I : “ i n the run-time situation snown in the igure o Y' e = i i S o ‘; ’% =] P
odel validation e Use flow tracing for static code ana/ysis or model verification ’,’ = P \'.'\ 'l "' on the |eft, TaSk'IOIT]S hO|dS fOUl’ I’Ul’lnab|eS a fu” Set Of detalled t'mlng reqUIrementS _-_,.-'///
On network level/RTOS level: N '- ! So runnable IdleSpeed10ms has to share its W
* Use scheduling analysis or scheduling simulation (especially in early phases) Task 10ms —= ' \ , I P]_ container with three runnables from other m R E F E R E N C E S
Timing profiling * As soon as code is executable, use tracing/measurement, ideally with on-target supervision T = GV e A i B e U e —
(execution times, CPU-load, etc.) On code level: i _ o TERM OR ABBREVIATION MEANING ,
e Use static code ana[ysis for WCET determination Runnables-of Task A and Intel’l’u ptS aCCOI’dIng tO thell’ attnbutes i [1] Peter Gliwa, Albrecht Mayer: ‘ i) .
» Use tracing/measurement, ideally with on-target supervision - (most important: period and priority). ASIL i 7otive SIL Qﬁfs,i,”t’;f,,if,’oﬁZZfZﬁ’,’,’;f;fﬁi‘,’;ﬂfjﬁfki,”nf,’}’,';k,;?;’h’f;ej;f’;ea”d(ﬁi’_Zigeﬁf‘%’;",,‘i,‘;’,’,lfré’;"zm1
Analyze/optimize scheduling Use scheduling analysis or scheduling simulation and check results using tracing/measurement vikHE Backgrou nd task Application code which gets executed when no other task or interrupt is pending
. 0 FUM-TIME SITUATION T(' - [2] ALL-TIMES: Integrating European Timing Analysis Technology.
* Use t(aCl”g and/or SChedUI’_ng' analysis or scheduling simulation to find hot-spots. Au L Q_)SAH BCET Best case execution time: minimum core execution time Research project within the European Commission’s 7th Framework Programme on Research,
Very important: do not optimize code that does not cause a hot-spot! GLIWA GmbH is an AUTOSAR development member Technological Development and Demonstration. www.all-times.org
R e Perform code reviews: look at generated/hand-written C code and for smaller fragments at BCRT Best case response time: minimum response time
Code optlmlzatlon (fOI' speed) . [31 Marek Jersak, Kai Richter, Peter Gliwa:
generated machine code Ratio of ti t spent ting the idle task to the duration of the time fi bserved Pl d Absicherung der Echtzeitfahigkeit von Soft d vernetzten St it
. tatic code analysis and/or more detailed tracing for monitoring the results of the code G L O S S A R Y CPU-Ioad / CPU-Ut”iZ&tiOﬂ atio of ime not spent executing e./ e ag (0] e uration o e time Trame observed. lanung un sicl erfmgl er Echizeitfahigkeit von Software und vernetzien Steuergerdten
g;etjfnjzatjon m How background tasks are to be considered is undefined. Simulation und Test fiir die Automobilelektronik 2010, Berlin, Germany, May 2010
L. L. Map frequently used symbols (code or data) to fast memories. Do not rely on your gut feeling % Deadline By design de.fined point in time when a certain event must have occurred, typically the termination [4] Q/\arfek ‘Jtersalk, Kai Ric?tfi:, Hips Sa;r;ow;ki, Peter Gliswe’; A Tzelektramk 200
Optimize speed by optimizing memory usage when judging what symbols could be “frequently used” but use tracing/measurement N of a task or interrupt aufzeitanalysen zur frihzeitigen Absicherung von Software ATZelektronik,
Design space exploration Use scheduling analysis or scheduling simulation ABBR. EXPANSION A Decomposition Breaking down a top level attribute into its components on a lower level [5] Nicholas Merriam, Peter Gliwa, lan Broster: ,
Iniect additi | load int isti f dt y Measurement and tracing methods for timing analysis
.. . . ® /nject aaditional load Into existing sortware and trace/measure IPT initial pending time Embedded trol unit International Journal on Software Tools for Technology Transfer, February 2013
Analyze timing behavior of future SW versions e Use scheduling analysis or scheduling simulation CET 2 ¢ 2 p, Task B - . - ECU e e controt tnt . beter G
. P 5 o H i Iver >cheickl, rstop! Inhauser, reter Gliwa:
Take repr ese.”tat’ ve code (ff agments of existing software or an automotive benchmark) and e execu I(')n ”.ne _ _ . __ E/E & ctiic/electronic Tool Support for Seamless System Development based on AUTOSAR Timing Extensions
Select best CPU Qi 2(/c code analysis or GET gross execution time Task A | | | | | | Hot-spot Application code that makes a particularly high contribution to CPU load, having a large core AN G el el R el S S s T T e e T Ly 7
for.br::?;;l::;7<ier1’g/traCIng RT response time IPT | | | : | P execution time or a high frequency or both. [7] Daniel Késtner , Christian Ferdinand:
—_ : : : f . . Safety Standards and WCET Analysis Tools
Design timing in the early development phase Use scheduling analysis or scheduling simulation DL deadline | cem | = Lo Idle task RTOS code which gets executed when no task or interrupt is pending and no background task is defined ERTS? 2012 | Embedded Real Time Software and Systems, Toulouse, France, February 2012
e In an early phase, use scheduling analysis or scheduling simulation DT delta time | | | [RTOS (or just "OS") Real time operating system
Verify timing . Z; i (ffrsz ;D:aisee:ag;?yigic(ls,;i/ 223;552 Zizgg:)/dea”y with a) on-target supervision and ST T~ I | GET | [Scheduling Deciding how to commit resources between a variety of possible tasks. [Wikipedia]
Corner case analysis * On network level/RTOS level: use scheduling analysis or scheduling simulation PER period : : RT : ! : Scheduling entity An entity that performs scheduling. Typically, this is one core or one bus.
* On code level: use static code analysis | | DL | l | SIL Safety integrity level. A higher level indicates the impact of errors can be more hazardous.
. A . Multicore has a big impact on the RTOS level analysis. Thus, the corresponding tools explicitly [
Multicore timing analysis need to support multicore. | | | & — Static analysis Model based offline analysis
. . . . o If a running system is available, use tracing to understand/profile it I I I 1| TIMEX AUTOSAR Timine Extensions
Multicore load balancing (static task allocation) « See “Design space exploration | | So o 8
Traceabili The ability to link certain aspects of a document (e.g. requirements in a requirements document) to
| PER | I ty the corresponding aspects in other documents (e.g. test cases in a test specification document) G e IAY.Y)
Tracing Logging events into a trace buffer embedded systems
> WCET Worst case execution time: maximum core execution time
-~ TIME .
QUG G 2l WCRT Worst case response time: maximum response time g I Iiwa.com

GLIWA GmbH embedded systems | Pollinger Str. 1 | D-82362 Weilheim

T1 — state of the art timing suite

