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Short Inspirational Talk

3

Topics:
• The evil of complexity
• Throughput and latency
• Bandwidth (feed the compute monster)
• From classic ECUs to SDV
• Real-time with distributed software components
• An overview of timing analysis in SDV environments



The Evil of Complexity



Why is Complexity bad in 1986?

5



Why is Complexity bad in 1998?



Complexity and OSI Layers 8 and 9

“The bitterness of poor quality remains long after the 
sweetness of low price is forgotten”
Benjamin Franklin
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Source: Sven Vermeulen , https://blog.siphos.be/2021/06/the-three-additional-layers-in-the-OSI-model/

https://blog.siphos.be/pages/about.html


Why is Complexity Bad Today?

• Humans can only handle 5-7 items consciously at once
• Shiffrin, Richard; Robert Nosofsky (April 1994). "Seven plus or minus two: A 

commentary on capacity limitations". Psychological Review. 

• How does this relate so Software?
• “There are no complex systems that are secure. Complexity is the worst 

enemy of security, and it almost always comes in the form a features or 
options.”

• “Complexity is a measure of how many things interact at any one point.”
• See 

Ferguson/Schneier: Practical Cryptography, Wiley 2003 / 
Ferguson, Schneier, Kohno: Cryptography Engineering, Wiley 2010



How to (not) Handle Complexity?

• KISS – Keep it simple, stupid
• The world needs more KISSing!

• Kahneman’s System 1 (fast)
• Low effort
• Works until it doesn’t, see Space Shuttle Challenger and

Intercity-Express 884 Wilhelm Conrad Röntgen
• Kahneman’s System 2 (slow)

• High effort
• Costly
• Gets the job done right, for a price 

• Break problem down into small parts (divide and conquer)
• Set up clear and simple interfaces



Throughput vs. Latency:
Have your Cake or eat it



FTL: Faster Takes Longer 

• Signal propagation delay in silicon exists
• Only so many logic gates can be reached in n nanoseconds
• Slice the task into consecutive steps
• Pipeline them
• Yeah! High clock rates

• But: many steps for each single unit of work
• Intel Pentium 4: bad performance for code with branches

• Product segmentation by pipeline length, example ARM:

• Application
• Realtime
• Microcontroller

ClockratePredictability
latency
in
clocks



Execution Times and how They Developed
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8051                          5xxx PowerPC                     Cortex-A76 

BCET     ACET    WCET BCET     ACET    WCET BCET     ACET    WCET

BCET = Best Case
Execution Time

ACET = Average Case
Execution Time

WCET = Worst Case
Execution Time

Technical features for more throughput:   a) higher clock rates   b) pipelines   c) caches   d) etc.



How to Feed the 
Compute Monster?



The Powerful Next Project Hardware
Multi-GHz
Multi-Core
SIMD
DSP
HW Crypto
1000BASE-T

Man, that memory
interface is
expensive! Let‘s
reduce the pin
count, cost control
ftw!

Why
does this
happen 
to my
project?



A’s in Math, C’s in Reading

• Early 1980s: CPUs <10MHz, RAM >=10MHz
• Early/Mid 1990s: 486DX2
• 2000s: Breaking the CPU GHz barrier, going multi-core
• 2009: AES implementation by Emilia Käsper is faster in calculating

S-BOX content on the fly than loading it from cache
• Today: CPUs and GPUs wait for memory to catch up

• ADAS on the parking lot



Today: CPUs
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Faster
RAM

Faster
RAM

Source: Gamers Nexus, https://gamersnexus.net/megacharts/cpus



Today: GPUs
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Source: Hardware Unboxed, https://youtu.be/WLk8xzePDg8?t=699

Losing against
previous model
due to slower
RAM access



ADAS in the Office, Divided and Conquered

RAM RAM RAM

  



ADAS in the Parking Lot

RAM

“Complexity is a measure of how many things interact at any one point.” (Niels Ferguson and Bruce Schneier)



What to do?

• Promote data locality
• Promote cache friendliness
• Specify and monitor memory bandwidth requirements for software
• Top tier: “memory Tetris”

• We did not understand the customer’s math PhD’s algorithms
• We did not have to
• We DMAed that data into local on-chip buffers when and where it was 

required and solved the RAM controller bottleneck
• The ADAS got off the parking lot and into mass production

• Always, always monitor timing changes when adding new software



Timing Requirements:
from classic ECU to SDV



ECU: Timing Parameters
• IPT (Initial Pending Time)

Ready time before task starts

• CET (Core Execution Time)
Time spent in running state, i.e. executing

• GET (Gross Execution Time)
From start to termination (cf. pin toggle)

• PRE (PREemption Time)
Sum of ready times without IPT

• RT (Response Time)
cf. schedulability analysis; DL (DeadLine) = limit for RT

• Period (PERiod)
time difference between two subsequent activations

• DT (Delta Time)
time difference between two subsequent events of the 
same type; observed period; cf. jitter

• ST (Slack Time)
duration of the ‘gap’

• NST (Net Slack Time)
headroom: time which could be added to CET
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ECU->SDV
From Tasks and ISRs to Event Chains
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Tracing/verification of event chains
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T1 – detection
T2 – planning T3 – req’d steering

T4 – motor math T5 – motor control
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Tracing/verification of event chains
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T1 – detection

T2 – planning

T3 – req’d steering

T4 – motor math

T5 – motor control

End-to-end

T1

T2

T3

T4

T5



Best practices for 
distributed software 

components



Event Chain how-to, step by step

• Identify event chains

• Specify them, including end-to-end timing requirement

• system architecture & software architecture

• Decompose event chains (e.g. T1+T2+T3+T4+T5)

• Verify event chains

• Supervise critical event chains in the final product
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Start Early, Automate
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Functional tests

(Timing tests)

Functional tests 
including Timing tests



Summary, advice w.r.t. timing

Dos
• Consider timing in all 

development steps.
• Every project must have a 

timing expert assigned.
• Establish automated timing 

tests (cf. functional tests)
• Get the timing infrastructure 

right in the platform.

Don‘ts
• Don’t let timing just happen, 

be aware of it!
• Don’t let task forces control 

your timing methodology.
• Don’t burn your best experts 

up in timing debugging
• If you fail to plan you plan 

to fail!
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Timing Analysis Tools 
and Techniques 

Applicable to SDV 
Environments



Overview of timing analysis techniques

If possible:
- Distributed
- Synchronized
- Full event chains



The Wisdom of the (not quite) Ancients
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Thank you!

M.Sc., Dipl.-Ing.(BA)
Christian Wenzel-Benner 
Director Training & Coaching
GLIWA GmbH & Co. KG  

phone +49-881-13 85 22-82
email     christian.wenzel-benner@gliwa.com
web gliwa.com

mailto:christian.wenzel-benner@gliwa.com
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Timing dependencies, timing impact
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ECUTiming

Costs

Safety

Security

Availability

Extendibility

Processor

Memory

Architecture

Scheduling

Configuration

Implementation



ECU: AUTOSAR / OSEK task states

36



Must everyone become a timing expert?
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• Not everyone needs to be a timing expert!

• My recommendation: T-shaped approach

• Depth 1
• Awareness that timing is important
• Know who the timing expert is

• Depth 2
• Decent timing expertise
• Timing tool knowledge
• Timing methodology knowledge
• Connection to super experts for the heavy lifting

People
Architects, developers, testers, etc.
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