
Software-Defined Vehicles
and

Real-Time Systems – like
Oil and Water?

SDV USA San Francisco

Summer 2025, Christian Wenzel-Benner

And is there any Dish Soap?

Short Inspirational Talk

3

Topics:
• The evil of complexity
• Throughput and latency
• Bandwidth (feed the compute monster)
• From classic ECUs to SDV
• Real-time with distributed software components
• An overview of timing analysis in SDV environments

The Evil of Complexity

Why is Complexity bad in 1986?

5

Why is Complexity bad in 1998?

Complexity and OSI Layers 8 and 9

“The bitterness of poor quality remains long after the
sweetness of low price is forgotten”
Benjamin Franklin

7

Source: Sven Vermeulen , https://blog.siphos.be/2021/06/the-three-additional-layers-in-the-OSI-model/

https://blog.siphos.be/pages/about.html

Why is Complexity Bad Today?

• Humans can only handle 5-7 items consciously at once
• Shiffrin, Richard; Robert Nosofsky (April 1994). "Seven plus or minus two: A

commentary on capacity limitations". Psychological Review.

• How does this relate so Software?
• “There are no complex systems that are secure. Complexity is the worst

enemy of security, and it almost always comes in the form a features or
options.”

• “Complexity is a measure of how many things interact at any one point.”
• See

Ferguson/Schneier: Practical Cryptography, Wiley 2003 /
Ferguson, Schneier, Kohno: Cryptography Engineering, Wiley 2010

How to (not) Handle Complexity?

• KISS – Keep it simple, stupid
• The world needs more KISSing!

• Kahneman’s System 1 (fast)
• Low effort
• Works until it doesn’t, see Space Shuttle Challenger and

Intercity-Express 884 Wilhelm Conrad Röntgen
• Kahneman’s System 2 (slow)

• High effort
• Costly
• Gets the job done right, for a price

• Break problem down into small parts (divide and conquer)
• Set up clear and simple interfaces

Throughput vs. Latency:
Have your Cake or eat it

FTL: Faster Takes Longer

• Signal propagation delay in silicon exists
• Only so many logic gates can be reached in n nanoseconds
• Slice the task into consecutive steps
• Pipeline them
• Yeah! High clock rates

• But: many steps for each single unit of work
• Intel Pentium 4: bad performance for code with branches

• Product segmentation by pipeline length, example ARM:

• Application
• Realtime
• Microcontroller

ClockratePredictability
latency
in
clocks

Execution Times and how They Developed

12

8051 5xxx PowerPC Cortex-A76

BCET ACET WCET BCET ACET WCET BCET ACET WCET

BCET = Best Case
Execution Time

ACET = Average Case
Execution Time

WCET = Worst Case
Execution Time

Technical features for more throughput: a) higher clock rates b) pipelines c) caches d) etc.

How to Feed the
Compute Monster?

The Powerful Next Project Hardware
Multi-GHz
Multi-Core
SIMD
DSP
HW Crypto
1000BASE-T

Man, that memory
interface is
expensive! Let‘s
reduce the pin
count, cost control
ftw!

Why
does this
happen
to my
project?

A’s in Math, C’s in Reading

• Early 1980s: CPUs <10MHz, RAM >=10MHz
• Early/Mid 1990s: 486DX2
• 2000s: Breaking the CPU GHz barrier, going multi-core
• 2009: AES implementation by Emilia Käsper is faster in calculating

S-BOX content on the fly than loading it from cache
• Today: CPUs and GPUs wait for memory to catch up

• ADAS on the parking lot

Today: CPUs

16

Faster
RAM

Faster
RAM

Source: Gamers Nexus, https://gamersnexus.net/megacharts/cpus

Today: GPUs

17
Source: Hardware Unboxed, https://youtu.be/WLk8xzePDg8?t=699

Losing against
previous model
due to slower
RAM access

ADAS in the Office, Divided and Conquered

RAM RAM RAM

  

ADAS in the Parking Lot

RAM

“Complexity is a measure of how many things interact at any one point.” (Niels Ferguson and Bruce Schneier)

What to do?

• Promote data locality
• Promote cache friendliness
• Specify and monitor memory bandwidth requirements for software
• Top tier: “memory Tetris”

• We did not understand the customer’s math PhD’s algorithms
• We did not have to
• We DMAed that data into local on-chip buffers when and where it was

required and solved the RAM controller bottleneck
• The ADAS got off the parking lot and into mass production

• Always, always monitor timing changes when adding new software

Timing Requirements:
from classic ECU to SDV

ECU: Timing Parameters
• IPT (Initial Pending Time)

Ready time before task starts

• CET (Core Execution Time)
Time spent in running state, i.e. executing

• GET (Gross Execution Time)
From start to termination (cf. pin toggle)

• PRE (PREemption Time)
Sum of ready times without IPT

• RT (Response Time)
cf. schedulability analysis; DL (DeadLine) = limit for RT

• Period (PERiod)
time difference between two subsequent activations

• DT (Delta Time)
time difference between two subsequent events of the
same type; observed period; cf. jitter

• ST (Slack Time)
duration of the ‘gap’

• NST (Net Slack Time)
headroom: time which could be added to CET

22

ECU->SDV
From Tasks and ISRs to Event Chains

23

24

Tracing/verification of event chains

25

T1 – detection
T2 – planning T3 – req’d steering

T4 – motor math T5 – motor control

PO
SI

X
RT

O
S

Tracing/verification of event chains

26

T1 – detection

T2 – planning

T3 – req’d steering

T4 – motor math

T5 – motor control

End-to-end

T1

T2

T3

T4

T5

Best practices for
distributed software

components

Event Chain how-to, step by step

• Identify event chains

• Specify them, including end-to-end timing requirement

• system architecture & software architecture

• Decompose event chains (e.g. T1+T2+T3+T4+T5)

• Verify event chains

• Supervise critical event chains in the final product

28

Start Early, Automate

29

Functional tests

(Timing tests)

Functional tests
including Timing tests

Summary, advice w.r.t. timing

Dos
• Consider timing in all

development steps.
• Every project must have a

timing expert assigned.
• Establish automated timing

tests (cf. functional tests)
• Get the timing infrastructure

right in the platform.

Don‘ts
• Don’t let timing just happen,

be aware of it!
• Don’t let task forces control

your timing methodology.
• Don’t burn your best experts

up in timing debugging
• If you fail to plan you plan

to fail!

30

Timing Analysis Tools
and Techniques

Applicable to SDV
Environments

Overview of timing analysis techniques

If possible:
- Distributed
- Synchronized
- Full event chains

The Wisdom of the (not quite) Ancients

33

Thank you!

M.Sc., Dipl.-Ing.(BA)
Christian Wenzel-Benner
Director Training & Coaching
GLIWA GmbH & Co. KG

phone +49-881-13 85 22-82
email christian.wenzel-benner@gliwa.com
web gliwa.com

mailto:christian.wenzel-benner@gliwa.com
mailto:christian.wenzel-benner@gliwa.com
mailto:christian.wenzel-benner@gliwa.com
http://gliwa.com/

Timing dependencies, timing impact

35

ECUTiming

Costs

Safety

Security

Availability

Extendibility

Processor

Memory

Architecture

Scheduling

Configuration

Implementation

ECU: AUTOSAR / OSEK task states

36

Must everyone become a timing expert?

37

• Not everyone needs to be a timing expert!

• My recommendation: T-shaped approach

• Depth 1
• Awareness that timing is important
• Know who the timing expert is

• Depth 2
• Decent timing expertise
• Timing tool knowledge
• Timing methodology knowledge
• Connection to super experts for the heavy lifting

People
Architects, developers, testers, etc.

Kn
ow

le
dg

e
de

pt
h

D1

D2

	�Software-Defined Vehicles and�Real-Time Systems – like Oil and Water?
	Short Inspirational Talk
	The Evil of Complexity
	Why is Complexity bad in 1986?
	Why is Complexity bad in 1998?
	Complexity and OSI Layers 8 and 9
	Why is Complexity Bad Today?
	How to (not) Handle Complexity?
	Throughput vs. Latency:�Have your Cake or eat it
	FTL: Faster Takes Longer
	Execution Times and how They Developed
	How to Feed the Compute Monster?
	The Powerful Next Project Hardware
	A’s in Math, C’s in Reading
	Today: CPUs
	Today: GPUs
	ADAS in the Office, Divided and Conquered
	ADAS in the Parking Lot
	What to do?
	Timing Requirements:�from classic ECU to SDV
	ECU: Timing Parameters
	ECU->SDV
	Slide Number 24
	Tracing/verification of event chains
	Tracing/verification of event chains
	Best practices for distributed software components
	Event Chain how-to, step by step
	Start Early, Automate
	Summary, advice w.r.t. timing
	Timing Analysis Tools and Techniques Applicable to SDV Environments
	Overview of timing analysis techniques
	The Wisdom of the (not quite) Ancients
	Slide Number 34
	Timing dependencies, timing impact
	ECU: AUTOSAR / OSEK task states
	Must everyone become a timing expert?

