eeeeeeeeeeeeeee

Efficiently ensure data
consistency

Background, examples and HowTos

Contents

Motivation, examples for inconsistent data

Data consistency with
— Protection mechanisms
— Concepts removing the need for protection altogether

Data consistency with
— Spinlocks
— Concepts removing the need for protection altogether

Runtime consumption (= ‘costs’)

Summary

GLIWA

Motivation, examples for
Inconsistent data

Example 1: calculating the absolute value

Simple function:
x=1yl

Simple implementation:

if (y<0) ' What can happen
. If code gets

X = -Y,
here?
else preempted here
X =Y,

Example 1 compiled for Atmel AVR

AVR: potential problem

¥

Assume code
gets preempted

... and
preempting
code writes

Result: x=|y]| = =5

Example 1 compiled for TriCore (AURIX)

AURIX: no problem

Example 2: accessing data structures

Preemption while reading
struct {

The preempting code updates the
data structure.

When the preempted code
continues, it uses inconsistent data
(partly old, partly new)

Example 3: count interrupts

Let’'s assume an
application needs to
know the total number of
ISRs executed.

Problem: sometimes the
execution of

ISR _high priois not
considered.

unsigned int counterISR = 0;

void __interrupt(0x05) ISR low prio (void)

{
_enable(); // globally enable interrupts
counterISR++;
DoSomething();

void _ interrupt(©x30) ISR high prio (void)
{
_enable(); // globally enable interrupts
counterISR++;
DoSomethingElse();

Example 3: how are interrupts ‘lost’?

memory

prio A

ISR_high_prio

ISR_low_prio

The execution
count of
ISR_high_prio is
accidentally lost.

GLIWA

Ensuring data consistency
on single-core

Solution S1: suspending interrupts

Introduce interrupt suspension:
__disable();

// Execute critical code with interrupts disabled
__enable();

Advantage: easy to implement

Problems
— Critical sections often difficult to identify
— Interrupts/tasks with higher priority get delayed.

— Even interrupts/tasks which do not write to the critical
data/resource get delayed.

Solution S2: Priority Celling Protocol

Priority Ceiling Protocol: ‘suspension up to the lowest required prio’
GetResource(myResourcel);
// Execute critical code; the CPU runs with
// the (lowest possible) prio that ensures, no
// other code writing to myResourcel can preempt.
ReleaseResource(myResourcel);

Advantage compared to interrupt suspension: no delay of
tasks/interrupts above the ‘Ceiling Prio’.

Problems
— All other problems stated for interrupt suspension remain.
— OS or at least implementation of the Priority Ceiling Protocol required

- Solution S3: use copies |

« At the beginning of each task, copies of all critical data are created.
—> ‘critical’ means here: data gets accessed from code with higher priority.

» The actual copy process is protected through interrupt suspension of PCP.
« The task uses the copy of the data only.

Task B
. Copy data with
interrupts suspended
- Task A
: ead access
(consistent data)
Write access to Local copy
global data

Globhal data

13

Solution S3: use copies Il

Typically implemented as some part of ‘all inclusive’ solution
— Automated discovery of critical sections/data
— Code generation of copies and copy routines

Example: AUTOSAR RTE (Run-Time Environment)

Advantage: User does not need to bother about data-consistency
=>» As long as run-time consumption and RAM requirements are irrelevant.

Problems
— Often high costs by means of run-time and RAM
— Increased latency due to protected copy routines

14

Solution S4: polling

#include <avr/io.h>
#include <avr/interrupt.h>

void InitHardware(void)

{
DDRB = (1<<PB@); /* pin connected to LED is output pin */
/* initialize timer 1 */
TCCR1B = (1<<CS11) | (1<<CS10); /* prescaler = clk/64 */
TIMSK |= (1<<TOIE1l); /* enable overflow interrupt */

}

ISR(TIMER1_OVF_vect) /* timer 1 overflow interrupt */
{

PORTB "= (1<<PB@); /* toggle LED */

// DoSomePeriodicalStuff();

¥
int main(void)
{
InitHardware();
sei(); /* globally enable interrupts */
while(1) {
// DoSomeBackgroundStuff();
¥
¥

Implementation with interrupts

15

Solution S4: polling I

#include <avr/io.h>
#include <avr/interrupt.h>

void InitHardware(void)

{
DDRB = (1<<PB@); /* pin connected to LED is output pin */
/* initialize timer 1 */
TCCR1B = (1<<CS11) | (1<<CS10); /* prescaler = clk/64 */
}
int main(void)
{
InitHardware();
while(1) {
// DoSomeBackgroundStuff();
if (TIFR & (1<<TOV1)) {
TIFR |= (1<<TOV1l); /* clear pending flag by
writing a logical 1 */
PORTB ~= (1<<PB@); /* toggle LED */
// DoSomePeriodicalStuff();
}
}
}

Implementation using polling

16

Solution S4: polling 1l

Advantage: interruptions avoided altogether, data consistency
conceptionally ensured

Problems
— Increased latency
— Big (and thus risky) modification when introduced to existing software.

17

Solution S5: cooperative multitasking |

Corel_2msT ask |
— 1 41 1 5F—fF—fFF—1—1
Core1_10msTask |

“ICore1_25msTask

Corel_2msT ask

Corel_10msTask

IS preemEtive

Corel 2ms_Task

IS cooperative

Corel 2ms_Task

18

Solution S5: cooperative multitasking Il

(Cooperative) task switches
are possible at ‘Schedule-
Points’ only.

Schedule-Points: call of OS
service function
OS_Schedule();

0S_Schedule() call not
necessarily required after each
runnable/function

OS_TASK(Corel 25msTask)

Corel_25msRunnable®(
0S_Schedule();
Corel_25msRunnablel(
0S_Schedule();
Corel_25msRunnable2(
0S_Schedule();
Corel_25msRunnable3(
0S_Schedule();
Corel_25msRunnable4(
0S_Schedule();
Corel_25msRunnable5(
0S_Schedule();
Corel_25msRunnable6(
0S_Schedule();
Corel_25msRunnable7(
0S_Schedule();
Corel_25msRunnable8(
0S_Schedule();
Corel_25msRunnable9(

hE

I

I

I

I

);

);

);

);

);

19

- Solution S5: cooperative multitasking Il

« Advantage

— No preemption of runnables, i.e. application code, data consistency
conceptionally ensured

— RAM required for stack typically drastically reduced.
— More efficient cache usage - run-time optimization
* Problem

— Latency of tasks with higher priority depends on execution time of
runnables in tasks with lower priority.

& == 0, CCRE (00 mmp | OCED OCCE——— s =
.

CERELT] -)8 am_ e O s lam_(O TR - -

20

GLIWA

Ensuring data consistency
on multi-core

Previous example 3 now with multi-core

The execution of
the ISR on CPU1
is overlooked.

Shared memory

prioA

ISR on CPU1

ISR on CPU2

« All previous approaches for ensuring data consistency do not work.

Solution M1: Spinlocks

Interface (services)

StatusType GetSpinlock (SpinlockIdType SpinlockId);
StatusType ReleaseSpinlock (SpinlockIdType SpinlockId)

StatusType TryToGetSpinlock (SpinlockIdType SpinlocklId,
TryToGetSpinlockType* Success);

Usage

GetSpinlock(spinlock);
/* Execute critical code here */
ReleaseSpinlock(spinlock);

23

5

‘hh
>

Problem #1 with GetSpinlock

ISR

CPU1

TASK B

TASK A

CPUO

® GetSpinlock
B ReleaseSpinlock
- Resource (spinlock) occupied
«»=as Spinning: waiting for the resource to be released

24

Problem #2 with GetSpinlock

Pseudo solution

DisableAllInterrupts();
GetSpinlock(spinlock);

/* Execute critical code here */
ReleaseSpinlock(spinlock);
EnableAllInterrupts();

25

Using Spinlocks correctly and efficiently

TryToGetSpinlockType success;
DisableOSInterrupts();
(void)TryToGetSpinlock(spinlock, &success);
while(TRYTOGETSPINLOCK NOSUCCESS == success)
{
EnableOSInterrupts();
/* Interrupts and high prio tasks can preempt here */
DisableOSInterrupts();
(void)TryToGetSpinlock(spinlock, &success);
}
/* Execute critical code here */
ReleaseSpinlock();
EnableOSInterrupts();

The previously mentioned problems #1 and #2 are solved.

26

Solution M2: GLIWA double-buffer

ldea: make any data structure
behave like an atomic global

variable

— Writing overwrites old value
— Reading gives you the last

value written

Accesses surrounded by Get

and Finish methods.

No blocking (interrupt locks or
spinlocks) in between these

methods!

Very short sections of blocking

within these methods

ask us!

e openly qvailable,

dataToprotect t* pWr;

pWr = GetWrPtr();

If (NULL != pWr) {
// write access, e.g.
// pWr->data[o] A
// pWr->data[1] 'B’;
FinishWr();

dataToprotect t* pRd;

pRd = GetRdPtr();

// read access, e.g.

// someVar = pRd->data[0];
// otherVar = pRd->data[l];
FinishRd();

How to write

How to read

27

Solution M3: Lamport's bakery algorithm

Cf. bakery: only one customer
served at the counter. Others
have to queue.

Advantage: works without
interrupt locks!

https://en.wikipedia.org/wiki/Lamport%27s_
bakery algorithm

https://www.geeksforgeeks.org/bakery-
algorithm-in-process-synchronization/

Compile with gcc -pthread

void lock(int thread)

{

// Before getting the ticket number
//"choosing" variable is set to be true
choosing[thread] = 1;

MEMBAR;
// Memory barrier appliedg

int max_ticket = 0;

// Finding Maximum ticke
for (int i = @; i < THREA

int ticket
max_ticket

tickets[)
[RESNEIRENY .- ——— A

}
// Allotting a new ticket [

tickets[thread] = max_tic
MEMBAR;
choosing[thread] = ©;
MEMBAR;
// The ENTRY Section starts from here
for (int other = 0; other < THREAD_COUNT; ++other) {

Image by dandelion_tea from Pixabay

// Applying the bakery algorithm conditions
while (choosing[other]) {
}

MEMBAR;

while (tickets[other] != @ && (tickets[other]
< tickets[thread]
|| (tickets[other]
== tickets[thread]
&& other < thread))) {

28

Solution M4: Logical Execution Time (LET)

« |dea: reserve certain time slots
on the time axis for
sending/writing and for
receiving/reading data.

—> writing and reading is
decoupled by design, hence no
further protection necessary

Task

Input : Output

Process

.

— t
GET
LET

Example without LET (data loss)

CPUO

CPU 1

Task_A

prio
Task_B
Task_C

A
o L e W
A s
| jf
| _._
:
0 1 2 3 4 t/ms

Same example with LET (no data loss)

CPU O

CPU 1

Task_A

Task_B
Task_C

ok e e et
- MU
B o

29

Solution M5: avoid the need for protection

unsigned int counterISR_low prio = 0;
unsigned int counterISR_high prio = 0;

void ISR low prio (void) _ attribute_ _ ((signal,used));
void ISR low prio (void)

{
_enable(); // globally enable interrupts
counterISR _low prio++;
DoSomething();

}

void ISR high prio (void) _ attribute_ ((signal,used));
void ISR high prio (void)

{
_enable(); // globally enable interrupts
counterISR_high prio++;
DoSomethingElse();
}
unsigned int GetCounterSum(void)
{
return counterISR_low prio + counterISR_high prio;
}

30

Run-time costs of data protection mechanisms

Spinlocks

DisableAllInterrupts();
EnableAllInterrupts();
provided by a safety OS

Threshold where a new
implementation pays off

DisableAllInterrupts();
EnableAllInterrupts();

__asm("di");

__asm("ei");

Costs (measured in execution time)

o
2

31

GLIWA

Summary

Emedded

Software
Timing

Book Embedded Software Timing

Contents

pProcessors)
* Timing theory

projects
« Timing optimization
« Multi-core, many-core
« AUTOSAR
« Safety, ISO 26262

Available in EN, DE, CN and KR

« Basics (Compilers, RTOSs,

« Timing analysis techniques
« Examples from automotive

Bl Em bl
M Softh Softw
Timi

P ()

mt;edded

Software
Timing

Summary

Safe and reliable software only possible with consistent data

General rules
— Multiple readers are not critical
— Nested reads are not critical
— Multiple writers are typically a design flaw - do not do it!
— Nested or simultaneous reading and writing are critical > need protection

All protection mechanisms come with advantages and disadvantages.
— For making the right choice, you need to know them!
— Knowing how your code generator (e.g. RTE) works carries great optimization potential.

When using Spinlocks, apply the TryToGetSpinlock approach shown!

The best data protection mechanism is the one you do not need

34

GLIW

embedded systems

Thank you

Peter Gliwa
Dipl.-Ing. (BA)

Geschaftsfihrer (CEO)

GLIWA GmbH embedded systems
Pollinger Str. 1

82362 Weilheim i.0OB.

Germany

fon +49 -881-138522-10
fax +49 - 881-138522-99
mobile +49 -177 -257 8672

peter.gliwa@gliwa.com
www.gliwa.com

