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Motivation, examples for 

inconsistent data



Example 1: calculating the absolute value

• Simple function:

x = | y |

• Simple implementation:

if (y<0)
x = -y;

else
x = y;
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What can happen 

if code gets 

preempted here?



Example 1 compiled for Atmel AVR
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AVR: potential problem

main:
lds r24,y
lds r25,y+1
tst r25
brge .L2
lds r24,y
lds r25,y+1
neg r25
neg r24
sbc r25,__zero_reg__
std Y+2,r25
std Y+1,r24
rjmp .L3

.L2:
lds r24,y
lds r25,y+1
std Y+2,r25
std Y+1,r24

.L3:
ldd r24,Y+1
ldd r25,Y+2

Compiler

volatile int y = -4;

int main(void)
{

int x;

if (y<0)
x = -y;

else
x = y;

return x;
}

Assume code 

gets preempted 

here…

… and 

preempting 

code writes 

y=5

Result: x =  | y |  =   – 5



Example 1 compiled for TriCore (AURIX)
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AURIX: no problem

main: ld.w d15,y
abs d2,d15
ret

Compiler

volatile int y = -4;

int main(void)
{

int x;

if (y<0)
x = -y;

else
x = y;

return x;
}



Example 2: accessing data structures

• Preemption while reading

• The preempting code updates the 

data structure.

• When the preempted code 

continues, it uses inconsistent data 

(partly old, partly new)
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struct {

}



Example 3: count interrupts

• Let’s assume an 

application needs to 

know the total number of 

ISRs executed.

• Problem: sometimes the 

execution of 

ISR_high_prio is not 

considered.

unsigned int counterISR = 0;

void __interrupt(0x05) ISR_low_prio (void)

{

_enable(); // globally enable interrupts

counterISR++;

DoSomething();

}

void __interrupt(0x30) ISR_high_prio (void)

{

_enable(); // globally enable interrupts

counterISR++;

DoSomethingElse();

}
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Example 3: how are interrupts ‘lost’?
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Ensuring data consistency 

on single-core



Solution S1: suspending interrupts

• Introduce interrupt suspension:
__disable();
// Execute critical code with interrupts disabled
__enable();

• Advantage: easy to implement

• Problems

– Critical sections often difficult to identify

– Interrupts/tasks with higher priority get delayed.

– Even interrupts/tasks which do not write to the critical 

data/resource get delayed.



Solution S2: Priority Ceiling Protocol

• Priority Ceiling Protocol: ‘suspension up to the lowest required prio’
GetResource(myResource1);
// Execute critical code; the CPU runs with
// the (lowest possible) prio that ensures, no
// other code writing to myResource1 can preempt.
ReleaseResource(myResource1);

• Advantage compared to interrupt suspension: no delay of 

tasks/interrupts above the ‘Ceiling Prio’.

• Problems

– All other problems stated for interrupt suspension remain.

– OS or at least implementation of the Priority Ceiling Protocol required



Solution S3: use copies I

• At the beginning of each task, copies of all critical data are created.

→ ’critical’ means here: data gets accessed from code with higher priority.

• The actual copy process is protected through interrupt suspension of PCP.

• The task uses the copy of the data only.
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Global data

Local copy

Copy data with 

interrupts suspended

Read access 

(consistent data)

Write access to 

global data

Task A

Task B



Solution S3: use copies II

• Typically implemented as some part of ‘all inclusive’ solution

– Automated discovery of critical sections/data

– Code generation of copies and copy routines

• Example: AUTOSAR RTE (Run-Time Environment)

• Advantage: User does not need to bother about data-consistency

• Problems

– Often high costs by means of run-time and RAM

– Increased latency due to protected copy routines
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➔ As long as run-time consumption and RAM requirements are irrelevant.



Solution S4: polling I

#include <avr/io.h>

#include <avr/interrupt.h>

void InitHardware(void)

{

DDRB = (1<<PB0); /* pin connected to LED is output pin */

/* initialize timer 1 */

TCCR1B = (1<<CS11) | (1<<CS10); /* prescaler = clk/64 */

TIMSK |= (1<<TOIE1); /* enable overflow interrupt */

}

ISR(TIMER1_OVF_vect) /* timer 1 overflow interrupt */

{

PORTB ^= (1<<PB0); /* toggle LED */

// DoSomePeriodicalStuff();

}

int main(void)

{

InitHardware();

sei(); /* globally enable interrupts */

while(1) {

// DoSomeBackgroundStuff();

}

}
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Solution S4: polling II

#include <avr/io.h>

#include <avr/interrupt.h>

void InitHardware(void)

{

DDRB = (1<<PB0); /* pin connected to LED is output pin */

/* initialize timer 1 */

TCCR1B = (1<<CS11) | (1<<CS10); /* prescaler = clk/64 */

}

int main(void)

{

InitHardware();

while(1) {

// DoSomeBackgroundStuff();

if (TIFR & (1<<TOV1)) {

TIFR |= (1<<TOV1); /* clear pending flag by

writing a logical 1 */

PORTB ^= (1<<PB0); /* toggle LED */

// DoSomePeriodicalStuff();

}

}

}
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Solution S4: polling III

• Advantage: interruptions avoided altogether, data consistency 

conceptionally ensured

• Problems

– Increased latency

– Big (and thus risky) modification when introduced to existing software.
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Solution S5: cooperative multitasking I
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Solution S5: cooperative multitasking II

OS_TASK( Core1_25msTask )

{

Core1_25msRunnable0( );

OS_Schedule( );

Core1_25msRunnable1( );

OS_Schedule( );

Core1_25msRunnable2( );

OS_Schedule( );

Core1_25msRunnable3( );

OS_Schedule( );

Core1_25msRunnable4( );

OS_Schedule( );

Core1_25msRunnable5( );

OS_Schedule( );

Core1_25msRunnable6( );

OS_Schedule( );

Core1_25msRunnable7( );

OS_Schedule( );

Core1_25msRunnable8( );

OS_Schedule( );

Core1_25msRunnable9( );

}

• (Cooperative) task switches 

are possible at ‘Schedule-

Points’ only.

• Schedule-Points: call of OS 

service function

OS_Schedule( ); 

• OS_Schedule( ) call not 

necessarily required after each 

runnable/function
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Solution S5: cooperative multitasking III

• Advantage

– No preemption of runnables, i.e. application code, data consistency 

conceptionally ensured

– RAM required for stack typically drastically reduced.

– More efficient cache usage → run-time optimization

• Problem

– Latency of tasks with higher priority depends on execution time of 

runnables in tasks with lower priority.
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Ensuring data consistency 

on multi-core



Previous example 3 now with multi-core
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• All previous approaches for ensuring data consistency do not work.



Solution M1: Spinlocks
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StatusType GetSpinlock      ( SpinlockIdType SpinlockId     );

StatusType ReleaseSpinlock  ( SpinlockIdType SpinlockId     );

StatusType TryToGetSpinlock ( SpinlockIdType SpinlockId,
TryToGetSpinlockType* Success );

GetSpinlock(spinlock);
/* Execute critical code here */
ReleaseSpinlock(spinlock);

Interface (services)

Usage



Problem #1 with GetSpinlock
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Problem #2 with GetSpinlock
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DisableAllInterrupts();
GetSpinlock(spinlock);
/* Execute critical code here */
ReleaseSpinlock(spinlock);
EnableAllInterrupts();

Pseudo solution



Using Spinlocks correctly and efficiently
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TryToGetSpinlockType success;
DisableOSInterrupts( );
(void)TryToGetSpinlock( spinlock, &success );
while( TRYTOGETSPINLOCK_NOSUCCESS == success )
{

EnableOSInterrupts( );
/* Interrupts and high prio tasks can preempt here */
DisableOSInterrupts( );
(void)TryToGetSpinlock( spinlock, &success );

}
/* Execute critical code here */
ReleaseSpinlock( );
EnableOSInterrupts( );

The previously mentioned problems #1 and #2 are solved.



Solution M2: GLIWA double-buffer
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• Idea: make any data structure 

behave like an atomic global 

variable

– Writing overwrites old value

– Reading gives you the last 

value written

• Accesses surrounded by Get
and Finish methods.

• No blocking (interrupt locks or 

spinlocks) in between these 

methods!

• Very short sections of blocking 

within these methods

dataToprotect_t* pWr;

pWr = GetWrPtr();
If (NULL != pWr) {

// write access, e.g.
// pWr->data[0] = 'A’;
// pWr->data[1] = 'B’;
FinishWr();

}
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dataToprotect_t* pRd;

pRd = GetRdPtr();
// read access, e.g.
// someVar  = pRd->data[0];
// otherVar = pRd->data[1];
FinishRd();
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void lock(int thread)
{

// Before getting the ticket number
//"choosing" variable is set to be true
choosing[thread] = 1;

MEMBAR;
// Memory barrier applied

int max_ticket = 0;

// Finding Maximum ticket value among current threads
for (int i = 0; i < THREAD_COUNT; ++i) {

int ticket = tickets[i];
max_ticket = ticket > max_ticket ? ticket : max_ticket;

}
// Allotting a new ticket value as MAXIMUM + 1
tickets[thread] = max_ticket + 1;
MEMBAR;
choosing[thread] = 0;
MEMBAR;
// The ENTRY Section starts from here
for (int other = 0; other < THREAD_COUNT; ++other) {

// Applying the bakery algorithm conditions
while (choosing[other]) {
}

MEMBAR;

while (tickets[other] != 0 && (tickets[other]
< tickets[thread]

|| (tickets[other]
== tickets[thread]

&& other < thread))) {
}

}
}

Solution M3: Lamport's bakery algorithm
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• Cf. bakery: only one customer 

served at the counter. Others 

have to queue.

• Advantage: works without 

interrupt locks!

• https://en.wikipedia.org/wiki/Lamport%27s_
bakery_algorithm

• https://www.geeksforgeeks.org/bakery-
algorithm-in-process-synchronization/

Compile with gcc -pthread
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Solution M4: Logical Execution Time (LET)

• Idea: reserve certain time slots 

on the time axis for 

sending/writing and for 

receiving/reading data.

→ writing and reading is 

decoupled by design, hence no 

further protection necessary
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Example without LET (data loss)

Same example with LET (no data loss)



Solution M5: avoid the need for protection
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unsigned int counterISR_low_prio = 0;
unsigned int counterISR_high_prio = 0;

void ISR_low_prio (void) __attribute__ ((signal,used));
void ISR_low_prio (void)
{

_enable(); // globally enable interrupts
counterISR_low_prio++;
DoSomething();

}

void ISR_high_prio (void) __attribute__ ((signal,used));
void ISR_high_prio (void)
{

_enable(); // globally enable interrupts
counterISR_high_prio++;
DoSomethingElse();

}

unsigned int GetCounterSum(void)
{

return counterISR_low_prio + counterISR_high_prio;
}



Run-time costs of data protection mechanisms

31



Summary



Book    Embedded Software Timing

Contents

• Basics (Compilers, RTOSs, 

processors)

• Timing theory

• Timing analysis techniques

• Examples from automotive 

projects

• Timing optimization

• Multi-core, many-core

• AUTOSAR

• Safety, ISO 26262
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Available in EN, DE, CN and KR



Summary

• Safe and reliable software only possible with consistent data

• General rules

– Multiple readers are not critical

– Nested reads  are not critical

– Multiple writers are typically a design flaw → do not do it!

– Nested or simultaneous reading and writing are critical → need protection

• All protection mechanisms come with advantages and disadvantages.

– For making the right choice, you need to know them!

– Knowing how your code generator (e.g. RTE) works carries great optimization potential.

• When using Spinlocks, apply the TryToGetSpinlock approach shown!

• The best data protection mechanism is the one you do not need
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Thank you


