
Version 4

Efficiently ensure data

consistency

Background, examples and HowTos

Solutions

S1..S5

Solutions

M1..M5

Contents

• Motivation, examples for inconsistent data

• Data consistency with single-core

– Protection mechanisms

– Concepts removing the need for protection altogether

• Data consistency with multi-core

– Spinlocks

– Concepts removing the need for protection altogether

• Runtime consumption (= ‘costs’)

• Summary

2

Motivation, examples for

inconsistent data

Example 1: calculating the absolute value

• Simple function:

x = | y |

• Simple implementation:

if (y<0)
x = -y;

else
x = y;

4

What can happen

if code gets

preempted here?

Example 1 compiled for Atmel AVR

5

AVR: potential problem

main:
lds r24,y
lds r25,y+1
tst r25
brge .L2
lds r24,y
lds r25,y+1
neg r25
neg r24
sbc r25,__zero_reg__
std Y+2,r25
std Y+1,r24
rjmp .L3

.L2:
lds r24,y
lds r25,y+1
std Y+2,r25
std Y+1,r24

.L3:
ldd r24,Y+1
ldd r25,Y+2

Compiler

volatile int y = -4;

int main(void)
{

int x;

if (y<0)
x = -y;

else
x = y;

return x;
}

Assume code

gets preempted

here…

… and

preempting

code writes

y=5

Result: x = | y | = – 5

Example 1 compiled for TriCore (AURIX)

6

AURIX: no problem

main: ld.w d15,y
abs d2,d15
ret

Compiler

volatile int y = -4;

int main(void)
{

int x;

if (y<0)
x = -y;

else
x = y;

return x;
}

Example 2: accessing data structures

• Preemption while reading

• The preempting code updates the

data structure.

• When the preempted code

continues, it uses inconsistent data

(partly old, partly new)

7

struct {

}

Example 3: count interrupts

• Let’s assume an

application needs to

know the total number of

ISRs executed.

• Problem: sometimes the

execution of

ISR_high_prio is not

considered.

unsigned int counterISR = 0;

void __interrupt(0x05) ISR_low_prio (void)

{

_enable(); // globally enable interrupts

counterISR++;

DoSomething();

}

void __interrupt(0x30) ISR_high_prio (void)

{

_enable(); // globally enable interrupts

counterISR++;

DoSomethingElse();

}

8

Example 3: how are interrupts ‘lost’?

9

Ensuring data consistency

on single-core

Solution S1: suspending interrupts

• Introduce interrupt suspension:
__disable();
// Execute critical code with interrupts disabled
__enable();

• Advantage: easy to implement

• Problems

– Critical sections often difficult to identify

– Interrupts/tasks with higher priority get delayed.

– Even interrupts/tasks which do not write to the critical

data/resource get delayed.

Solution S2: Priority Ceiling Protocol

• Priority Ceiling Protocol: ‘suspension up to the lowest required prio’
GetResource(myResource1);
// Execute critical code; the CPU runs with
// the (lowest possible) prio that ensures, no
// other code writing to myResource1 can preempt.
ReleaseResource(myResource1);

• Advantage compared to interrupt suspension: no delay of

tasks/interrupts above the ‘Ceiling Prio’.

• Problems

– All other problems stated for interrupt suspension remain.

– OS or at least implementation of the Priority Ceiling Protocol required

Solution S3: use copies I

• At the beginning of each task, copies of all critical data are created.

→ ’critical’ means here: data gets accessed from code with higher priority.

• The actual copy process is protected through interrupt suspension of PCP.

• The task uses the copy of the data only.

13

Global data

Local copy

Copy data with

interrupts suspended

Read access

(consistent data)

Write access to

global data

Task A

Task B

Solution S3: use copies II

• Typically implemented as some part of ‘all inclusive’ solution

– Automated discovery of critical sections/data

– Code generation of copies and copy routines

• Example: AUTOSAR RTE (Run-Time Environment)

• Advantage: User does not need to bother about data-consistency

• Problems

– Often high costs by means of run-time and RAM

– Increased latency due to protected copy routines

14

➔ As long as run-time consumption and RAM requirements are irrelevant.

Solution S4: polling I

#include <avr/io.h>

#include <avr/interrupt.h>

void InitHardware(void)

{

DDRB = (1<<PB0); /* pin connected to LED is output pin */

/* initialize timer 1 */

TCCR1B = (1<<CS11) | (1<<CS10); /* prescaler = clk/64 */

TIMSK |= (1<<TOIE1); /* enable overflow interrupt */

}

ISR(TIMER1_OVF_vect) /* timer 1 overflow interrupt */

{

PORTB ^= (1<<PB0); /* toggle LED */

// DoSomePeriodicalStuff();

}

int main(void)

{

InitHardware();

sei(); /* globally enable interrupts */

while(1) {

// DoSomeBackgroundStuff();

}

}

15

Im
p
le

m
e
n
ta

ti
o

n
 w

it
h
 i

n
te

rr
u

p
ts

Solution S4: polling II

#include <avr/io.h>

#include <avr/interrupt.h>

void InitHardware(void)

{

DDRB = (1<<PB0); /* pin connected to LED is output pin */

/* initialize timer 1 */

TCCR1B = (1<<CS11) | (1<<CS10); /* prescaler = clk/64 */

}

int main(void)

{

InitHardware();

while(1) {

// DoSomeBackgroundStuff();

if (TIFR & (1<<TOV1)) {

TIFR |= (1<<TOV1); /* clear pending flag by

writing a logical 1 */

PORTB ^= (1<<PB0); /* toggle LED */

// DoSomePeriodicalStuff();

}

}

}

16

Im
p
le

m
e
n
ta

ti
o

n
 u

s
in

g
 p

o
ll

in
g

Solution S4: polling III

• Advantage: interruptions avoided altogether, data consistency

conceptionally ensured

• Problems

– Increased latency

– Big (and thus risky) modification when introduced to existing software.

17

Solution S5: cooperative multitasking I

18

C
o
r
e
1
_
2
m
s
_
T
a
s
k

is
 p

re
e
m

p
ti

v
e

C
o
r
e
1
_
2
m
s
_
T
a
s
k

is
 c

o
o

p
e
ra

ti
v
e

Solution S5: cooperative multitasking II

OS_TASK(Core1_25msTask)

{

Core1_25msRunnable0();

OS_Schedule();

Core1_25msRunnable1();

OS_Schedule();

Core1_25msRunnable2();

OS_Schedule();

Core1_25msRunnable3();

OS_Schedule();

Core1_25msRunnable4();

OS_Schedule();

Core1_25msRunnable5();

OS_Schedule();

Core1_25msRunnable6();

OS_Schedule();

Core1_25msRunnable7();

OS_Schedule();

Core1_25msRunnable8();

OS_Schedule();

Core1_25msRunnable9();

}

• (Cooperative) task switches

are possible at ‘Schedule-

Points’ only.

• Schedule-Points: call of OS

service function

OS_Schedule();

• OS_Schedule() call not

necessarily required after each

runnable/function

19

Solution S5: cooperative multitasking III

• Advantage

– No preemption of runnables, i.e. application code, data consistency

conceptionally ensured

– RAM required for stack typically drastically reduced.

– More efficient cache usage → run-time optimization

• Problem

– Latency of tasks with higher priority depends on execution time of

runnables in tasks with lower priority.

20

Ensuring data consistency

on multi-core

Previous example 3 now with multi-core

22

• All previous approaches for ensuring data consistency do not work.

Solution M1: Spinlocks

23

StatusType GetSpinlock (SpinlockIdType SpinlockId);

StatusType ReleaseSpinlock (SpinlockIdType SpinlockId);

StatusType TryToGetSpinlock (SpinlockIdType SpinlockId,
TryToGetSpinlockType* Success);

GetSpinlock(spinlock);
/* Execute critical code here */
ReleaseSpinlock(spinlock);

Interface (services)

Usage

Problem #1 with GetSpinlock

24

Problem #2 with GetSpinlock

25

DisableAllInterrupts();
GetSpinlock(spinlock);
/* Execute critical code here */
ReleaseSpinlock(spinlock);
EnableAllInterrupts();

Pseudo solution

Using Spinlocks correctly and efficiently

26

TryToGetSpinlockType success;
DisableOSInterrupts();
(void)TryToGetSpinlock(spinlock, &success);
while(TRYTOGETSPINLOCK_NOSUCCESS == success)
{

EnableOSInterrupts();
/* Interrupts and high prio tasks can preempt here */
DisableOSInterrupts();
(void)TryToGetSpinlock(spinlock, &success);

}
/* Execute critical code here */
ReleaseSpinlock();
EnableOSInterrupts();

The previously mentioned problems #1 and #2 are solved.

Solution M2: GLIWA double-buffer

27

• Idea: make any data structure

behave like an atomic global

variable

– Writing overwrites old value

– Reading gives you the last

value written

• Accesses surrounded by Get
and Finish methods.

• No blocking (interrupt locks or

spinlocks) in between these

methods!

• Very short sections of blocking

within these methods

dataToprotect_t* pWr;

pWr = GetWrPtr();
If (NULL != pWr) {

// write access, e.g.
// pWr->data[0] = 'A’;
// pWr->data[1] = 'B’;
FinishWr();

}

H
o

w
 t

o
 w

ri
te

dataToprotect_t* pRd;

pRd = GetRdPtr();
// read access, e.g.
// someVar = pRd->data[0];
// otherVar = pRd->data[1];
FinishRd();

H
o

w
 t

o
 r

e
a
d

void lock(int thread)
{

// Before getting the ticket number
//"choosing" variable is set to be true
choosing[thread] = 1;

MEMBAR;
// Memory barrier applied

int max_ticket = 0;

// Finding Maximum ticket value among current threads
for (int i = 0; i < THREAD_COUNT; ++i) {

int ticket = tickets[i];
max_ticket = ticket > max_ticket ? ticket : max_ticket;

}
// Allotting a new ticket value as MAXIMUM + 1
tickets[thread] = max_ticket + 1;
MEMBAR;
choosing[thread] = 0;
MEMBAR;
// The ENTRY Section starts from here
for (int other = 0; other < THREAD_COUNT; ++other) {

// Applying the bakery algorithm conditions
while (choosing[other]) {
}

MEMBAR;

while (tickets[other] != 0 && (tickets[other]
< tickets[thread]

|| (tickets[other]
== tickets[thread]

&& other < thread))) {
}

}
}

Solution M3: Lamport's bakery algorithm

28

• Cf. bakery: only one customer

served at the counter. Others

have to queue.

• Advantage: works without

interrupt locks!

• https://en.wikipedia.org/wiki/Lamport%27s_
bakery_algorithm

• https://www.geeksforgeeks.org/bakery-
algorithm-in-process-synchronization/

Compile with gcc -pthread

Im
a
g
e
 b

y
 d

a
n
d
e
lio

n
_
te

a
 f

ro
m

 P
ix

a
b
a
y

Solution M4: Logical Execution Time (LET)

• Idea: reserve certain time slots

on the time axis for

sending/writing and for

receiving/reading data.

→ writing and reading is

decoupled by design, hence no

further protection necessary

29

Example without LET (data loss)

Same example with LET (no data loss)

Solution M5: avoid the need for protection

30

unsigned int counterISR_low_prio = 0;
unsigned int counterISR_high_prio = 0;

void ISR_low_prio (void) __attribute__ ((signal,used));
void ISR_low_prio (void)
{

_enable(); // globally enable interrupts
counterISR_low_prio++;
DoSomething();

}

void ISR_high_prio (void) __attribute__ ((signal,used));
void ISR_high_prio (void)
{

_enable(); // globally enable interrupts
counterISR_high_prio++;
DoSomethingElse();

}

unsigned int GetCounterSum(void)
{

return counterISR_low_prio + counterISR_high_prio;
}

Run-time costs of data protection mechanisms

31

Summary

Book Embedded Software Timing

Contents

• Basics (Compilers, RTOSs,

processors)

• Timing theory

• Timing analysis techniques

• Examples from automotive

projects

• Timing optimization

• Multi-core, many-core

• AUTOSAR

• Safety, ISO 26262

33

Available in EN, DE, CN and KR

Summary

• Safe and reliable software only possible with consistent data

• General rules

– Multiple readers are not critical

– Nested reads are not critical

– Multiple writers are typically a design flaw → do not do it!

– Nested or simultaneous reading and writing are critical → need protection

• All protection mechanisms come with advantages and disadvantages.

– For making the right choice, you need to know them!

– Knowing how your code generator (e.g. RTE) works carries great optimization potential.

• When using Spinlocks, apply the TryToGetSpinlock approach shown!

• The best data protection mechanism is the one you do not need

34

Thank you

