Let's take a look at how timing is or can be

o o AUTOSAR CP i addressed in AUTOSAR CP and AUTOSAR AP.
[IMming wow» . — o
Functiona — — A Architectur
POS IX ArChiteCtu re unc Ionallty A unc |onaI|ty B :J'pOgAtReCAtP giffers from AUTOSAR CP in that it defines a

SOA (Service-Oriented Architecture [14]) for the Adaptive
Applications (AA).

The AUTOSAR Runtime for Adaptive Applications (ARA)
constitutes the environment in which the applications can

@apping of Functionality to Software Components (SW-Cs)

Y ¥

Mapping of Functionality to Adaptive Applications an)

\

(B! NTRODUCTION o frorare CP A

CP SW-C 1 CP SW-C 2 CP SW-C3 - Software run and access a wide variety of high level services, plus low
For many years classical AUTOSAR operating systems, based . 0O\ C ' 0 O 0 o R AMELA TN i level interfaces to the OS [3](3.1). AAs are developed in
on the OSEK/VDX Standard' SLIIted the automotlve World ArCh Itectu re V|rtua| FUnCtiOnal Bus (VFB) eeeese Neesesernsesssansnsssennssecesnnnes N.:’.:‘.’.‘.‘.:‘.::::::::::::::.........; \ fereeeeeennneesnnncennnnccsennccnnnsccnnnns - - - ArCh IteCtu re C++ [6] The OS Of AUTOSAR AP |S POSIX as Opposed to
qL;iti.V\f[el(;. in 2016 tension to the AUTOSAR @\/sz are implemented as sets of Runnabtes.) @App[ications B o appUca@ OSEK/VDX of AUTOSAR CP.
nitiated in as an extension to the
CP (“Classic Platform™), the AUTOSAR AP (“Adaptive \ | The ARA runs on an AUTOSAR AP machine, which can
Platform") targets high-performance ECUs such as i CP SW-C 1 SlalFaritkElz Rl sl e s e Implementation represent
autonomous driving controllers [31(2.1). Implementatlon, AUTOSAR « Runnable mylOms worker_runnable CP SW-C 2 Here SOME/IPis used for : Service . Service : P ' e a physical machine - including an MMU in order to
AUTOSAR AP comes with major impacts on the way System fﬁfé.ﬁﬁiﬁ“ﬁi * Runnable mySms_worker_runnable CP SW-C 3 cross-platform communi- : Execution —— Execution e Machine System support virtual memory for multiprocessing [31(4.4)
B e e Configuration o g goeneg o s S and data Manifest 1 Manifest and data Manifest | Manitest | || Manfest | Configuration e
, , ypervisor
to S translat . .

This poster sheds some light on how timing is f x Pl i:\pLer:::terjzz 2n'O£P s \ /ﬁ °a cqntamer — a standardized encapsulated software

s Tt L i @ loyment: mapping of Runnables to tasks and tasks to cores) Application in the AP ECU. l\Apphcat\OﬁS are deployed as Software Package e e e

the new AUTOSAR AP world and beyond. i SR

Aerwssal BE EEY = The most important components of the ARA

AUTOSAR CF ECUZ Application 2 in this context are:

presence should be avoided, as it uses up valuable PIDs.

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 et .
! AUTOSAR CP 'E - —— S c e Execution Management [1]
! & (5] CP Application 74 \\CP Application CP Application Communication ~ther services SW Update & v * Communication Management [2]
" E \ Management . -\ g , o State Mana =~ Configuration E e POSIX Operating System [9]
! . | | / g gement .
: 2.1 Architecture >N - S\ Service Registration, X " Synchronization, Networx Management
I When AUTOSAR was introduced in 2003, it defined the o > - ding Deterministic Execution Rt Diazgnostics, ctc. Authentication, SW Package =
1 ' — K , —
I methodology for how to develop a system top-down. : Deployment, SW Package Q. . izi i
- gy p y _ p i % Os Jpdate, Reconfiguration (D) e Organl.zmg Executlo_n . . .
! See the left side of the central diagram which deals with Q OS (POSIX) 0 The execution of an AA is organized into multiple layers of
i AUTOSAR CP. Virtual Machine / Container / Hard abstraction on top of the OS scheduling level. Each layer can
: (Virtual) Machine / Container / Hardware be modeled with a dedicated state machine as shown in the
I 2.2 Scheduling and Execution Management AP part of the picture on the left.
! In a nutshell: OSEK defines tasks as containers for code
1
L to be executed. Tasks have fixed priorities — leaving aside p—— | " - e ‘ . The Execution Manager and AA need to synchronize their
' temporary priority modification through the priority ceiling { sventuaskrype evs R st by rocess states 1as seen from the Execuifion Yianager's perspecive) view of the AA state. The Execution Manager creates the
. . . . o esssssssssiessie it **®for(;;) // non-terminating ECC task o c . . = int main(int argc, char *argv u " " R u 1 g H
1 protocol — and their attributes are defined at compile-time. ~ @sk starts here (transition Ready = Running) Jeeesseesessssss? : (\(ro:d Lo Rt: I oo som | | many RIE goneratos 3 ldle Starting | Running Terminating | Terminated o= ietval-g gviD) S AA process (“Idle” to “Starting™). AA's execution state wil
. Multicore Partitioned Scheduling is also statically configured LLI / Ree_BV_CyclicZ_Task_B_0_sms); ~ l ~w ~ | k. + L initialize App data here — start at “Initializing”. After initialization, the AA reports its
X off-board. E Eaclh Cycle ends with a call to WaitEvent () and starts When ::i:;::‘r’::::::—:(&::; o cyetios mask 5.0 0ms | i ‘ r—— ‘ f f;{e::ltllOZ:;::;R:Z;?::;:sj::t:;k::;nzz)Zeturn) o @) “Running"” execution state.
! Typically, the RTE generator creates tasks like the non- -~ WaltE"eSt () returns. So this FEECTUO?IIS used Forscthfd‘*“”g Ree_ 50 Cyclica Task B_0_5ms)); T SN Communication st e - — In the case of self-termination, the AA reports its execution
' terminating Extended Conformance Class (ECC) TASK_B) Task_B. User expectation: one LEI reflects one cycle: JUUIRIRER T Ao iy o B g I e b e Process | Management Process B 1--ﬂ'?}‘e;’;‘vté?ﬁ;f;“tté§$p§§§P§§§§siﬁéaﬁiéfii’fl‘r‘é‘iéﬁ‘ﬁéés here o state as “Terminating”. The AA will then clean up, commit to
. : oo B EEER iR g {)) ion: — i (waitpi i .) - — . .
: shown on the rlght. However, IN many cases it would be S @TE remelles reception Foke)_,..--...-n S:Egﬁ:ﬂ:ﬂgﬂﬁgﬂgﬁf;; % gﬁgﬁgﬁ’ig creatlon,_:.(fork) 8 .4 j L te"mlnated:;(waltpld) return retval; // terminate with success — Storage’ and exit norma”y from the process. The Execution
I better to create separate terminating Basic Conformance £ myloms_worker. runnable(); // Runnable /_M,Kﬁ = 3 Manager will wait on the process exit status (“Terminating
. Class (BCC) tasks to increase efficiency and reduce = ((RTE schedules all Runnables with 10ms Js*™0 B (ev & Ree Bv Cyelics Task B0 Sus) i= (Sventhaskiype)) A i unning O to “Terminated”). If the execution management initiates the
X At AR 0O - 2020909090 oo e . oy L : : :
complexity [8]. od et b i ARy bk i, \ :
: p y [] e RTE SChedULeS au I—{unnables W‘th St period '?Vol?-(g)p‘éﬁDEEEvzrététCin(g)év;'ériR‘qgergﬁiTaskiB)i /////// Adaptive Ap"-!i-’ﬂ.’;ion Lifecyde é tern‘_]tlréatlon' It Se?ﬁs a POS'X Slggal to the AA' WhICh WI”
1 M n N eiesariisidisRRRRESEidEes gg;d;cfeazgger(lt?:v_&,(g;’r)ll_Ev_TriggerSM_Task_B " /2 - reac y runn'ng e same proce ure.
: 2.3 Tlmlng Parameters é C‘regular” WaitEvent () Ca@ ; my5ms_worker_ runnable(); // Runnable é ﬁ det - ; . .
o egiAe e o e (y_q:;.gComisendSignal(TorqueiTx, (&Torque_Tx_local)); := or aeterministic execution reqmremen S,
i ini;zigsang trgcsea;c:‘ gﬁ’lgi :thl;?]dtl:](;eg ;Efsijl/\r/]sltlacl)lntion: - LLl (RTE handles transmission of data Jessesseessesseasesssses? EE Q” optional Deterministic Client AP s avai[abl& / P —
’ m as. ms :—': ’ v T .
i parameters in red color. = T code replaces the code abave avoding dfferent K gercese e nf)c_“ . |d — DCC = Deterministic Client Cycle ‘B “call WaitForNextActivation ()" Beside other features, the Deterministic Client API [11(7.6.2)
CanSM:MainFunction(); ecommended set—up -dri i -dri i i
: i: of WaitEvent (). RTE communication is not shown here \—> g PR avoiding non-terminating DCC_Executing Oﬁfrs even:hdl’lIertn ;md fime (ijrlven CyC:leexeCUtlllon. Th|e
1 | (and in fact it is often more efficient with this approach). TR B S [EEE Tasks Enter Cycle - e | [Ul C L IS USUIEE Tl (e 012 (Bt ol LT D Rtey Adi e
. pp (Task_B_5ms) g eave Cycle 2 EY . hi d th . .
1 G L O S S A RY : ! EventMaskType ev; g g s B.. /* if the process uses the DeterministicClient, the App code Its State macnine an t € exeCUtlon over tlme
| S O Rs Following WaltEvent call is a “regular* WaitBvent Wilttiing, : 3 . B Tt | Snt Appcoda(vetay oo beve could feok dike this: ¥/ e The timing parameters we propose (CET, DT, ... in red)
i (a4 ‘regular’ WaitEvent () call (noneed forany) L..edert o, B L £ DCC_Activated g DCC_Suspended > = L ""ittivetianmeturntype dooType; // Deterministic Client c relate to a specific cycle type, in the picture “kRun". For each
I . . . “scheduling” Waitk £() in this roach) fes (void)ClearEvent(ev & (Can_Ev_TriggerSM_Task_B)); g = g = Hals: /1 cycle (Deeyseype,, T i
| AA Adaptive Application scheduling” WaitEven approac CanXep_MainFunction(); s 2 i € while (13 { // ondlert®fgtsse, <) cycle type a separate set of timing parameters is calculated.
' Abstract System Description Description of features on an y oTmRtTerOr § = ACTIVATION signal < Selryph - beferminiaciocl fBmastrontextactivationo; 5
1 = S Wi
1 abstract level without considering the actual mapping to § & case
1 . . X L s \) ca andler registering services here
! hardware, software and physical communication interfaces _— @\\\\\\ e case"iéé"éli,licems;ove; : - O 4.4 OS Scheduling
. “‘““ \\ = - ca t service lscovery an er ere
! AMP Asymmetric Multiprocessing implies that different cores - I \“\“\\\\\\\\\\\\\\\\\\\\\nnl S - 2% il 3 28 3L 3 5 G “one Cycle il o - AA tasks are processes and threads, scheduled to run on the
| AP aSSlghr!ed dlﬁe-rentIT‘Ol((e:IS hich sof b o ® B o 38 S \\\\\\\\\\\\\mml‘mh‘lllllllllllIIIHHIHllllIlIIIIIIIIH\\\\\\\\\\\ g gg }<>_(|<>T: g gg <>|T: <>|E E 8 caseHbreak. E o available cores according to the POSIX scheduling policies,
— + ge c \\ i ® earl cyclic andler here e — u m— . . i nmoou " m " 0
: AP Machine A (virtualized) ECU onto which software can be — FRIGRITY) . : £, BE5 S\\\\ \\\\\\\\ : 8 T K ef E2 AN E 6% s yclic app handler h - including “FIFO", “RR ,.and OT‘I-!ER policies [?]. .
i deployed 3 2 - s &3 &8¢ s \\\\\\‘ < <§ = < < <§ <5 < <8 . fw_tgrmitmte with success g 3 In contrast to the Multicore Partitioned Scheduling used in
, , T i ofaults /) Tnvalis T waive _ _ :
: ARXML AUTOSAR XML, In.ClLI(-jlng SySFem, S.oftware O Task B 5ms | | | | ‘ | ' ”IIII]|E=\\\\\\\\\\ l lx l =~ lx lx lx lx ; lx lx return 1; // terminate with error <) O OSEK, POSIX OS |mp|ementat|ons genera”y use Multicore
' components and communication configuration I.>I.I< - l i l u l - = B B 1B i o ET] I.>I.<l Global Scheduling, dynamically assigning cores to threads at
! ec:trift'go:nfjotfmrfoﬁr;hljﬁg;l;ifnorve%'g;vig;:gef’:;tevxtaff e Task Btomst— N N L ;| Released g - N N a IR useful ﬁene? (;ncladel for process and thread
] ! 0 | = states is shown in the scheduling state diagram [13] (3.2, Fig
' mapping to AUTOSAR CP and AUTOSAR AP Task C I | . » - . _ ! E . W 1ST: 3.1) at the bottom right in the picture
i ECU Electronic C | Uni bedded h o ‘ b o L E : The CET for an App Process ; :
ectronic Control Unit, an embedded system that 'OIPT A o by = a single Ready state only 5 o Sonic . e | he run-time of
I i = CET1 | i = -NST1 11 NST2 1 = E NST = ST-GET of kServiceDiscovery in between e accumulates the run-time o
: controls motor vehicle subsystems — ! | PRED U v =) - all its threads. As a conse- When a process is created (“non-existing” to “new"),
5 | — =] .. i
X MMU Memqry N\anagem_ent Unit, a hardware component Q>) | | GET o : : = Read Continue All timing pararieters ﬁwe Application processes and threads are) quence, the CET might be usually by the “parent”, the OS assigns it a Process Identifier
' necessary to implement virtual memory O | | L ST L E (Read)) are related to kRun. | scheduled by the underlying POSIX OS. /|- greater than the GET. (PID), an address space and the first thread of execution, also
1 . one E o . . r . = ! : = .) !
" Mqltlcore Padltlongd Schedu!lpg Scheduling algorithm in - | | RT : : | = Resume - called the “main thread", for which AP standardizes the
i which tasks are statically partitioned between cores. Often bo , | DL ! z ‘\\‘ App Process configuration [11(7.7.3.3) (7.6.3.1).
| = H H u i u u
! chosen for AMP c , | PER ! | =z Preerdll — thread 1 _ o Wake u WAITT nted The new thread is admitted (“new" to “ready”), and can
H H H H H H = S accumulate q q g .
| Multicore Global Scheduling Scheduling algorithms in which = | | DT | :] T o Ready time spent in *Waiting" then be picked up for execution via a context-switch
! clcq)res ar;a resources dynamically assigned to tasks. Often o] ! TIME = nr erminate rond - - , (“ready” to “running"). A thread can release the core
i chosen for SMP > E thread 2 [- o S e :
' T S 4 f Hip . _Cc) | CET=CET1 + CET2 + CET3 NST = NST7 + NST2 = - ! - 2 Q volluntanly (running to_ waiting ./ blocked / sleeping),
! ultiprocessing (OS) support for multiple concurren 5 . 5 | " RUNT3 B N Wait (also “Block® q>) or involuntarily (preemption: “running* to “ready").
rocesses ; S5 ' o = or “Sleep”) ' i iti
! ?)SEK/VDX Py o ¥ N [erioriTry | < S Start Suspended —thread 3 - N .I o > I The OS wakes up and switches-in waiting threads and
i elnleliel AU SIS e f ! 8 - N | — = 3 80 preempted threads respectively at the appropriate time
i the AUTOSAR OS layer 2 8 T % % ' RUNT4 | RUNT5 RUNT6 | CET=RUNTT + RUNT2 + RUNT3 _ sy T (o ey R S ST T
X g w2 55 22 £38 Dol = ! S c ("waiting" to “ready”, “ready” to “running").
i PID Pr Identifier - a uni identifier for the pr = < = §238° < 5 Activated / | I 1S (5.1 i | +RUNT4+RUNT5 + RUNT6 RUNT: accumulated erminate e . . e - X .
| OcCess ldentiTier - a unique iaentifier Tor the process g E kS %jé o &2 &2 (Ready) Atz 3 :g: 1B o :ug an | time spent in “Running* —_ When a thread terminates (“running” to “done" / dead /
) R b o5 &2 5 83 : :) : . .
' POSIX Portable Operating System Interface (Unix-like) = 8% 3% 8 Y08 §!8F:F = terminated), the OS will keep the exit status information.
i Process An address space realized with virtual memory, with l l l u Iv l , : Coreview ' = S88!'sS /8s 'S | New T Done E When the exit status has been collected, it will be freed and
' one or more threads e_xecutm_g within that address space s | core0 | [T U TTITE v = c~ the thread will cease to exist (“done" to “non-existing").
: RTE AUTOSAR Run-Time Environment il ‘ q % j Basic Conformance Class (BCC) ¢ — y e Eres O
' SMP In Symmetric Multiprocessing, all cores are considered | “regular” WaitEvent () “scheduling” WaitEvent () — Core1 | thread 2 | TIME () When calculating RUNT, the time wn A “done" process whose parent process does not collect its
: equal : . : ' > e, 2ok oGy dess st ~ “stolen* (interrupts etc.) is deducted exit status is called a “Zombie" process, whose long lasting
1 SOME/IP Scalable service-Oriented MiddlewarE over IP, an
1
1

automotive middleware solution for control messages
SW-C Software Component (CP)

Task Scheduler OSEK/AUTOSAR CP AND AUTOSAR AP DETERMINISTIC CLIENT POSIX OS SCHEDULING CPU-utilization (also referred to as CPU-load): the GLIWA introduced the timing parameters shown in the

- i sum U of all CETs within a defined time-frame ¢
Thread A single ﬂ.ow of control W|th|n a process. Process ABR. EXPLANATION ABR. EXPLANATION ABR. EXPLANATION (the "observation frame") in relation to t time(s)the POSIX [9] is a set of standards for operating systems, which CP section of the picture on the left several years ago into
memory is accessible to all threads in the same process Timin g IPT initial pending time PER period SL scheduling latency number of relevant cores (). allows applications to be easily moved from OS to OS without ~ AUTOSAR CP [15]. With this poster we propose a mapping
. e Vllrtual Function Eus (CP) | S CET core execution time ST slack time WAITT accumulated time spent in “Waiting" requiring changes. of the timing parameters to the cycles of the deterministic
: ;/qlrlt:arol\(/:\ees?zrytﬁpoa ;tﬁctllsnleaé/_eflf’evyer'li _1 OZV;C P Param eters GET B < cccution time PRE IRt on time (AUTOSAR CP only) RUNT accumulated time spent in “Running” Such EIIETS can Iiela’ceh’to Zspeciﬁc code-fragmen:}, a client as outlined in the picture.
ult I u ult I VIEW runnable, a task, a thread, a process, a core or the i i
: p g g p y RT P e time DL deadline (*max. RT*) runnapler atasc p Its_sco_pe is mostly the portable m_terface pres_ented to the_
I . , piete system. application and leaves most of the internal OS implementation
] DT delta time NST net slack time N cET .
, U — Doy (n) out of scope. The POSIX standards include the C language,
X nc-to processes, threads, signals, timers, file system, I/O, IPC, real
: &R EFERENCES time extensions and more. POSIX fundamentally requires
! virtual memory in order to support multiprocessing.
i [1] AUTOSAR, [2] AUTOSAR, [4] AUTOSAR, [6] AUTOSAR, [9] The Open GROUP, POSIX Standard [13] Kay A. Robbins, Steven Robbins, POSIX certifications for operating systems are available [7].
1 Specification of Execution Management AUTOSAR AP Release 18-10 Specification of Communication Management AUTOSAR AP Release 18-10 Methodology for Adaptive Platform AUTOSAR AP Release 18-10 Guidelines for the use of the C++14 language in critical and https://publications.opengroup.org/standards/unix UNIX Systems Programming: Communication, However manv OSes do not go through the process. for
; https://www.autosar.org/standards/adaptive-platform/ https://www.autosar.org/standards/adaptive-platform/ https://www.autosar.org/standards/adaptive-platform/ safety-related systems; AUTOSAR AP Release 18-10 [10] WIKIPEDIA, Hypervisor Concurrency, and Threads, Prentice Hall, 2003 . ' y) g g p ' .
[3] AUTOSAR, [5] AUTOSAR, https://www.autosar.org/standards/adaptive-platform/ s i A [14] SOA Manifesto Authors, SOA Manifesto practical reasons. A prominent example of such a POSIX-like
: Specification of Adaptive Platform Design AUTOSAR AP Release 18-10 Specification of Manifest AUTOSAR AP Release 18-10 [7] IEEE, POSIX Certification [11] WIKIPEDIA, POSIX http://www.soa-manifesto.org operating systems is GNU / Linux, a|though speciﬁc variants G - W
https://www.autosar.org/standards/adaptive-platform/ https://www.autosar.org/standards/adaptive-platform/ http://get.posixcertified.ieee.org https://en.wikipedia.org/wiki/POSIX [15] AUTOSAR, Recommended Methods and Practices for Timing are certified. cmbedded sl
[8] Peter Gliwa, GLIWA, A systematic approach for timing requirements [12] Red Hat, Topics, What are Linux containers? Analysis and Design within the AUTOSAR Development Process
EMCC (Embedded Multi-Core Conference) 2018 in Munich https://\)vww.reahat.com/en/topics/containers https://www.autosar.org/standards/classic-platform/

https://gliwa.com/index.php?page=downloads&lang=eng/

gliwa.com

. . . . R R R I I I I I I EEE—————————— GLIWA GmbH bedded | Polli Str. 1 | D-82362 Weilhei
T1 - state of the art timing-analysis, stack-analysis, memory-access analysis B o

