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This poster sheds some light on how timing is f x Pl i:\pLer:::terjzz 2n'O£P s \ /ﬁ °a cqntamer — a standardized encapsulated software

s Tt L i @ loyment: mapping of Runnables to tasks and tasks to cores ) Application in the AP ECU. l\Apphcat\OﬁS are deployed as Software Package e e e

the new AUTOSAR AP world and beyond. i SR

Aerwssal BE EEY = The most important components of the ARA

AUTOSAR CF ECUZ Application 2 in this context are:

presence should be avoided, as it uses up valuable PIDs.
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