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AUTOSAR performance vs. dancing 

• AUTOSAR CP, Single-core 

– Cf. one single guy doing break-dance 

– High performance core 

 

 

• AUTOSAR CP, Multi-core 

– Cf. dancing chorus 

– Communication between (often very similar) 

cores 

 

• AUTOSAR AP, Any-core 

– Cf. dancing crowd 

– Rather non-deterministic behavior 

– Difficult to control 
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The big picture 
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The big picture: general structure 
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Step 1: Functional Architecture 
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Functional architecture 
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Step 2: AUTOSAR CP top-down 
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Software Architecture 
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In AUTOSAR CP, functionality 

gets mapped onto “Software 

Components” (SW-C). 

CP 



Implementation, System Configuration 
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Deployment 
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Scheduling: what does the OS do? 
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Task states 

Tasks in OSEK: container for 

code, e.g. several runnables 

CP 



Scheduling: what does the RTE do? 

TASK(Task_B) 

{ 

  EventMaskType ev; 

  for(;;) 

  { 

    (void)WaitEvent(    Rte_Ev_Cyclic2_Task_B_0_10ms | 

                        Rte_Ev_Cyclic2_Task_B_0_5ms ); 

 

    (void)GetEvent(Task_B, &ev); 

 

    (void)ClearEvent(ev & ( Rte_Ev_Cyclic2_Task_B_0_10ms | 

                            Rte_Ev_Cyclic2_Task_B_0_5ms )); 

 

    if ((ev & Rte_Ev_Cyclic2_Task_B_0_10ms) != (EventMaskType)0) 

    { 

      CanNm_MainFunction(); 

      CanSM_MainFunction(); 

    } 

 

    if ((ev & Rte_Ev_Cyclic2_Task_B_0_5ms) != (EventMaskType)0) 

    { 

      CanTp_MainFunction(); 

      CanXcp_MainFunction(); 

    } 

} 

CP 

The RTE adds another 

layer of scheduling on 

top of the OS. 



TASK(Task_B) 

{ 

  EventMaskType ev; 

  for(;;) 

  { 

    (void)WaitEvent(    Rte_Ev_Cyclic2_Task_B_0_10ms | 

                        Rte_Ev_Cyclic2_Task_B_0_5ms ); 

 

    (void)GetEvent(Task_B, &ev); 

 

    (void)ClearEvent(ev & ( Rte_Ev_Cyclic2_Task_B_0_10ms | 

                            Rte_Ev_Cyclic2_Task_B_0_5ms )); 

 

    if ((ev & Rte_Ev_Cyclic2_Task_B_0_10ms) != (EventMaskType)0) 

    { 

      CanNm_MainFunction(); 

      CanSM_MainFunction(); 

    } 

 

    if ((ev & Rte_Ev_Cyclic2_Task_B_0_5ms) != (EventMaskType)0) 

    { 

      CanTp_MainFunction(); 

      CanXcp_MainFunction(); 

    } 

} 

Non terminating ECC task 

Task starts here 

Task “ends” here (in fact it 

switches to state waiting) 

Task “restarts” here (in 

fact it switched from 

waiting via ready to 

running) U
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(void)WaitEvent( Can_Ev_TriggerSM_Task_B ); 

(void)GetEvent(Task_B, &ev); 

(void)ClearEvent(ev & ( Can_Ev_TriggerSM_Task_B )); 

“scheduling” WaitEvent 

“regular” WaitEvent 

 ?? CET ?? 

Scheduling: what does the RTE do? 
CP 
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Step 3: AUTOSAR AP top-down 
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Software Architecture 
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In AUTOSAR AP, functionality 

gets mapped onto “Adaptive 

Applications” (AA). 

AP 



What is an Adaptive Application? 

• Think of it as a program as written for a PC. 

– Plus a description of its services, the 

Service Instance Manifest 

– Plus a description of its execution properties, the 

Execution Manifest 

– It comes with its own main function. 

 

• In contrast to CP, the AP software of an ECU has 

several main functions, one for each AA. 

 Just like on your PC. 
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Adaptive Application: example 
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AP 

int main(int argc, char *argv[]) 
{ 
    int retval; 
    // initialize App data here 
 
    ExecutionClient.ReportProcessState(kRunning); 
 
    // call App code here (which may or may not return), e.g.: 
    // retval = AppCode(); 
 
    ExecutionClient.ReportProcessState(kTerminating); 
    // save persistent App data and free all resources here 
 
    return retval; // terminate with success 
} 

Ups, one important 

thing missing for AP… 



Adaptive Application: example 
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int main(int argc, char *argv[]) 
{ 
    int retval; 
    // initialize App data here 
 
    ExecutionClient.ReportProcessState(kRunning); 
 
    // call App code here (which may or may not return), e.g.: 
    // retval = AppCode(); 
 
    ExecutionClient.ReportProcessState(kTerminating); 
    // save persistent App data and free all resources here 
 
    return retval; // terminate with success 
} 

The Application must 

report its state to the 

Execution Manager 

AP 



Implementation, System Configuration 
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AP 



Deployment 
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AP 

Deployment can take at run-

time (“adaptive”). 



Execution Client 
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AP 

For those familiar with Linux: 

The Execution Manager is similar to systemd, 

each AA resembles a systemd service.  



Deterministic Client 

• Definition Deterministic Client [1] 
Adaptive Application interface to Execution Management 

to support control of the process-internal cycle, a 

deterministic worker pool, activation time stamps and 

random numbers. 

 

• Using the Deterministic Client is optional. 

 

• In the following we will concentrate on the “process-

internal cycle” aspect only. 
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Deterministic Client: example 
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AP 
int AppCode(void) 
{ 
    ActivationReturnType dccType;   // Deterministic Client 
                                    // Cycle (DCC) type 
    while (1) { // endless loop 
        dccType = DeterministicClient.WaitForNextActivation(); 
        // each execution of the code below is one "Cycle" 
        switch (dccType) { 
        case kRegisterServices: 
            // call handler registering services here 
            break; 
        case kServiceDiscovery: 
            // call service discovery handler here 
            break; 
        case kInit: 
            // call init handler here 
            break; 
        case kRun: 
            // call cyclic App handler here 
             break; 
        case kTerminate: 
            return 0; // terminate with success 
        default: // invalid return value 
            return 1; // terminate with error 
        } 
    } 
} 

If the process uses the 

Deterministic Client, 

the App code called 

from the main function 

shown earlier could 

look like this.  
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The Deterministic 

Client comes with 

different cycle types. 

See switch-case 

values. 



Deterministic Client Cycle (DCC) 
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AP 



Deterministic Client Cycle (DCC) 
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AP 

Source: [1] AUTOSAR SWS “Specification of Execution Management”, 18-10 

POSIX processes start with 

a single (main) thread but 

can spawn new threads. 



POSIX Scheduling 
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Timing of Threads; definition of CET 
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AP 

CET = RUNT1 + 

RUNT2 + RUNT3 + 

RUNT4 + RUNT5 + 

RUNT6 



Proposed timing parameter mapping 
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AP 

Suggestion 

by GLIWA 
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Step 2: AUTOSAR CP top-down 
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Timing parameters 
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Posters by GLIWA 
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Download PDF from gliwa.com or 

request a free hard-copy 



Status of ARTI 

• ARTI (AUTOSAR / ASAM Run-Time Interface) 

• AUTOSAR draft release in October 2018 

• ASAM project started in 2019 

• Left side of V-model: AUTOSAR, right side: ASAM (cf. A2L) 
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ELF 

• User selects events to trace 

• AS components provide hooks 

• Trace-tools provide trace-code 

Data exchange format 

specification for 

• Model (“system 

configuration”) 

• Traces 

• Timing parameters 



Status of TIMEX for AUTOSAR AP 

• Expert discussions ongoing 

– General discussion on how to address timing in AP 

– Definition of Events in AP 

 TIMEX always needs items (in the AUTOSAR meta-model) 

which can be referenced 

 

• Target: first version of with R19-11 (AUTOSAR release 

in November this year) 
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Summary 

• I hope you enjoyed today‘s tour through CP/AP Timing! 

 

• AP brings many completely new aspects (compared to CP) 

– However, as AP is POSIX-based, we can apply some of our Linux, 

QNX, etc. experience. 

– With the right mapping / definition of timing-parameters we can reuse 

some of the CP (timing) ideas. 

 possibly standardize the mapping? 

 

• It is the (trace) tool-vendors task to 

build bridges from CP to AP. 
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To be released in autumn 

Contents 

• Basics (Compilers, RTOSs, 

processors) 

• Timing theory 

• Timing analysis techniques 

• Examples from automotive 

projects 

• Timing optimization 

• Multi-core, many-core 

• AUTOSAR 

• Safety, ISO 26262 
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Thank you 
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