
Timing in AUTOSAR CP,

AUTOSAR AP and beyond

Peter Gliwa, EMCC 2019

Version 1, CC5

Contents

2

• The big picture of Timing in AUTOSAR

• Timing top down in AUTOSAR CP

• Timing top down in AUTOSAR AP

 including some suggestions

• Status of ARTI (AUTOSAR/ASAM Run-Time Interface)

• Status of TIMEX for AUTOSAR AP

AUTOSAR performance vs. dancing

• AUTOSAR CP, Single-core

– Cf. one single guy doing break-dance

– High performance core

• AUTOSAR CP, Multi-core

– Cf. dancing chorus

– Communication between (often very similar)

cores

• AUTOSAR AP, Any-core

– Cf. dancing crowd

– Rather non-deterministic behavior

– Difficult to control

3

The big picture

4

L
a

y
e

rs
 (

o
f
a

b
s
tr

a
c
ti
o

n
)

The big picture: general structure

5

shared

shared

CP AP

1.

4.

2. 3.

Today’s tour

L
a

y
e

rs
 (

o
f
a

b
s
tr

a
c
ti
o

n
)

Step 1: Functional Architecture

6

shared

shared

CP AP

4.

2. 3.

Today’s tour

1.

Functional architecture

7

L
a

y
e

rs
 (

o
f
a

b
s
tr

a
c
ti
o

n
)

Step 2: AUTOSAR CP top-down

8

shared

shared

CP AP

4.

3.

Today’s tour

1.

2.

CP

Software Architecture

9

In AUTOSAR CP, functionality

gets mapped onto “Software

Components” (SW-C).

CP

Implementation, System Configuration

10

CP

Deployment

11

CP

Scheduling: what does the OS do?

12

Task states

Tasks in OSEK: container for

code, e.g. several runnables

CP

Scheduling: what does the RTE do?

TASK(Task_B)

{

 EventMaskType ev;

 for(;;)

 {

 (void)WaitEvent(Rte_Ev_Cyclic2_Task_B_0_10ms |

 Rte_Ev_Cyclic2_Task_B_0_5ms);

 (void)GetEvent(Task_B, &ev);

 (void)ClearEvent(ev & (Rte_Ev_Cyclic2_Task_B_0_10ms |

 Rte_Ev_Cyclic2_Task_B_0_5ms));

 if ((ev & Rte_Ev_Cyclic2_Task_B_0_10ms) != (EventMaskType)0)

 {

 CanNm_MainFunction();

 CanSM_MainFunction();

 }

 if ((ev & Rte_Ev_Cyclic2_Task_B_0_5ms) != (EventMaskType)0)

 {

 CanTp_MainFunction();

 CanXcp_MainFunction();

 }

}

CP

The RTE adds another

layer of scheduling on

top of the OS.

TASK(Task_B)

{

 EventMaskType ev;

 for(;;)

 {

 (void)WaitEvent(Rte_Ev_Cyclic2_Task_B_0_10ms |

 Rte_Ev_Cyclic2_Task_B_0_5ms);

 (void)GetEvent(Task_B, &ev);

 (void)ClearEvent(ev & (Rte_Ev_Cyclic2_Task_B_0_10ms |

 Rte_Ev_Cyclic2_Task_B_0_5ms));

 if ((ev & Rte_Ev_Cyclic2_Task_B_0_10ms) != (EventMaskType)0)

 {

 CanNm_MainFunction();

 CanSM_MainFunction();

 }

 if ((ev & Rte_Ev_Cyclic2_Task_B_0_5ms) != (EventMaskType)0)

 {

 CanTp_MainFunction();

 CanXcp_MainFunction();

 }

}

Non terminating ECC task

Task starts here

Task “ends” here (in fact it

switches to state waiting)

Task “restarts” here (in

fact it switched from

waiting via ready to

running) U
s
e
rs

 w
a
n
t

to
 s

e
e
 t

h
e
 b

o
d
y

o
f
th

e

lo
o
p
 a

s
 o

n
e
 o

c
c
u
rr

e
n
c
e
 o

f
T
a
s
k
_
B

(void)WaitEvent(Can_Ev_TriggerSM_Task_B);

(void)GetEvent(Task_B, &ev);

(void)ClearEvent(ev & (Can_Ev_TriggerSM_Task_B));

“scheduling” WaitEvent

“regular” WaitEvent

 ?? CET ??

Scheduling: what does the RTE do?
CP

L
a

y
e

rs
 (

o
f
a

b
s
tr

a
c
ti
o

n
)

Step 3: AUTOSAR AP top-down

15

shared

shared

CP AP

4. Today’s tour

1.

2. 3.

AP

Software Architecture

16

In AUTOSAR AP, functionality

gets mapped onto “Adaptive

Applications” (AA).

AP

What is an Adaptive Application?

• Think of it as a program as written for a PC.

– Plus a description of its services, the

Service Instance Manifest

– Plus a description of its execution properties, the

Execution Manifest

– It comes with its own main function.

• In contrast to CP, the AP software of an ECU has

several main functions, one for each AA.

 Just like on your PC.

17

AP

Adaptive Application: example

18

AP

int main(int argc, char *argv[])
{
 int retval;
 // initialize App data here

 ExecutionClient.ReportProcessState(kRunning);

 // call App code here (which may or may not return), e.g.:
 // retval = AppCode();

 ExecutionClient.ReportProcessState(kTerminating);
 // save persistent App data and free all resources here

 return retval; // terminate with success
}

Ups, one important

thing missing for AP…

Adaptive Application: example

19

int main(int argc, char *argv[])
{
 int retval;
 // initialize App data here

 ExecutionClient.ReportProcessState(kRunning);

 // call App code here (which may or may not return), e.g.:
 // retval = AppCode();

 ExecutionClient.ReportProcessState(kTerminating);
 // save persistent App data and free all resources here

 return retval; // terminate with success
}

The Application must

report its state to the

Execution Manager

AP

Implementation, System Configuration

20

AP

Deployment

21

AP

Deployment can take at run-

time (“adaptive”).

Execution Client

22

AP

For those familiar with Linux:

The Execution Manager is similar to systemd,

each AA resembles a systemd service.

Deterministic Client

• Definition Deterministic Client [1]
Adaptive Application interface to Execution Management

to support control of the process-internal cycle, a

deterministic worker pool, activation time stamps and

random numbers.

• Using the Deterministic Client is optional.

• In the following we will concentrate on the “process-

internal cycle” aspect only.

23

AP

Deterministic Client: example

24

AP
int AppCode(void)
{
 ActivationReturnType dccType; // Deterministic Client
 // Cycle (DCC) type
 while (1) { // endless loop
 dccType = DeterministicClient.WaitForNextActivation();
 // each execution of the code below is one "Cycle"
 switch (dccType) {
 case kRegisterServices:
 // call handler registering services here
 break;
 case kServiceDiscovery:
 // call service discovery handler here
 break;
 case kInit:
 // call init handler here
 break;
 case kRun:
 // call cyclic App handler here
 break;
 case kTerminate:
 return 0; // terminate with success
 default: // invalid return value
 return 1; // terminate with error
 }
 }
}

If the process uses the

Deterministic Client,

the App code called

from the main function

shown earlier could

look like this.

L
o

o
p

 b
o

d
y
:
e

a
c
h

 e
x
e

c
u

ti
o

n
 =

 o
n

e
 c

y
c
le

The Deterministic

Client comes with

different cycle types.

See switch-case

values.

Deterministic Client Cycle (DCC)

25

AP

Deterministic Client Cycle (DCC)

26

AP

Source: [1] AUTOSAR SWS “Specification of Execution Management”, 18-10

POSIX processes start with

a single (main) thread but

can spawn new threads.

POSIX Scheduling

27

AP

Timing of Threads; definition of CET

28

AP

CET = RUNT1 +

RUNT2 + RUNT3 +

RUNT4 + RUNT5 +

RUNT6

Proposed timing parameter mapping

29

AP

Suggestion

by GLIWA

L
a

y
e

rs
 (

o
f
a

b
s
tr

a
c
ti
o

n
)

Step 2: AUTOSAR CP top-down

30

shared

shared

CP AP 3.

Today’s tour

1.

2.

4.

Timing parameters

31

Posters by GLIWA

32

Download PDF from gliwa.com or

request a free hard-copy

Status of ARTI

• ARTI (AUTOSAR / ASAM Run-Time Interface)

• AUTOSAR draft release in October 2018

• ASAM project started in 2019

• Left side of V-model: AUTOSAR, right side: ASAM (cf. A2L)

33

ELF

• User selects events to trace

• AS components provide hooks

• Trace-tools provide trace-code

Data exchange format

specification for

• Model (“system

configuration”)

• Traces

• Timing parameters

Status of TIMEX for AUTOSAR AP

• Expert discussions ongoing

– General discussion on how to address timing in AP

– Definition of Events in AP

 TIMEX always needs items (in the AUTOSAR meta-model)

which can be referenced

• Target: first version of with R19-11 (AUTOSAR release

in November this year)

34

Summary

• I hope you enjoyed today‘s tour through CP/AP Timing!

• AP brings many completely new aspects (compared to CP)

– However, as AP is POSIX-based, we can apply some of our Linux,

QNX, etc. experience.

– With the right mapping / definition of timing-parameters we can reuse

some of the CP (timing) ideas.

 possibly standardize the mapping?

• It is the (trace) tool-vendors task to

build bridges from CP to AP.

35

To be released in autumn

Contents

• Basics (Compilers, RTOSs,

processors)

• Timing theory

• Timing analysis techniques

• Examples from automotive

projects

• Timing optimization

• Multi-core, many-core

• AUTOSAR

• Safety, ISO 26262

36

Thank you

References

[1] AUTOSAR, Specification of Execution Management

AUTOSAR AP Release 18-10

https://www.autosar.org/standards/adaptive-platform/

[2] AUTOSAR, Specification of Communication Management

AUTOSAR AP Release 18-10

https://www.autosar.org/standards/adaptive-platform/

[3] AUTOSAR, Specification of Adaptive Platform Design

AUTOSAR AP Release 18-10

https://www.autosar.org/standards/adaptive-platform/

[4] AUTOSAR, Methodology for Adaptive Platform

AUTOSAR AP Release 18-10

https://www.autosar.org/standards/adaptive-platform/

[5] AUTOSAR, Specification of Manifest

AUTOSAR AP Release 18-10

https://www.autosar.org/standards/adaptive-platform/

[6] AUTOSAR, Guidelines for the use of the C++14 language in critical

and safety-related systems

AUTOSAR AP Release 18-10

https://www.autosar.org/standards/adaptive-platform/

[7] IEEE, POSIX Certification

http://get.posixcertified.ieee.org

[8] Peter Gliwa, GLIWA, A systematic approach for timing requirements

EMCC (Embedded Multi-Core Conference) 2018 in Munich

https://gliwa.com/downloads/

[9] The Open GROUP, POSIX Standard

https://publications.opengroup.org/standards/unix

[10] WIKIPEDIA, Hypervisor

https://en.wikipedia.org/wiki/Hypervisor

[11] WIKIPEDIA, POSIX

https://en.wikipedia.org/wiki/POSIX

[12] Red Hat, Topics

https://www.redhat.com/en/topics/containers

[13] Kay A. Robbins, Steven Robbins, UNIX Systems Programming:

Communication, Concurrency, and Threads

Prentice Hall, 2003

[14] SOA Manifesto Authors, SOA Manifesto

http://www.soa-manifesto.org

[15] AUTOSAR, Recommended Methods and Practices for Timing Analysis

and Design within the AUTOSAR Development Process

https://www.autosar.org/standards/classic-platform/

38

