
A systematic approach for

timing requirements

EMCC 2018, Munich

Version 1.1

Peter Gliwa
CEO GLIWA GmbH

2

Contents

• Introduction

• AUTOSAR Timing extensions

• Timing requirements

• Tracing: Timing verification

• A report from the frontline

• Conclusion

Introduction

4

Why care about timing?

• Proper timing of ECU software is essential for

– Reliability / Availability

– Safety (and often also Security)

• Timing problems are very often difficult

– to identify as such, to debug, to solve

• ISO 26262 requires “freedom of interference”

– Can only be guaranteed in the absence of timing

problems

• Multicore

– If your single-core timing is unstable already,

multi-core will be a nightmare

Such indicator

does not exist

(unfortunately)

Single-core Multi-core

5

Software Development Process

System Tests

Module Tests

Integration

Design

Implementation

Requirements

Timing requirements/

timing constraints

Timing layout, Mapping,

OS configuration

Timing debugging/

optimization

Profiling (CETs), timing

supervision

Profiling (RTs, CPU-load),

timing supervision

Apply your develeopment

processes and

methodologies also to the

timing of your software!

Who is GLIWA embedded systems?

• Timing analysis and embedded software expertise since 2003

– Headquarters located in Weilheim near Munich; GLIWA Ltd. in York

– 35 employees, many timing experts

– Average annual growth over the past 7 years: 27,5%

• Stack Analysis combining static and dynamic methods

6

AUTOSAR

Timing Extensions

(TIMEX)

8

AUTOSAR overview

Source: autosar.org Let‘s focus on one ECU (“EcuTiming”)

9

AUTOSAR: ECU example

R
u
n
n
a
b
le

s

S
W

-C
s

S
W

-C
 A

S
W

-C
 i

sc

S
W

-C
 B

S
W

-C
 C

S
W

-C
 D

S
W

-C
 E

emcu_1ms_task

emcu_init_task

emcu_50ms_task

emcu_10ms_task T
a
s
k
s

R
u

n
n

a
b

le
 t

o
 t

a
s

k
 m

a
p

p
in

g

Core 0 Core 1 Core 2

T
a

s
k
 t
o

c
o

re

m
a

p
p

in
g

• The SW-C “idle speed control” of an
engine management ECU is coded in
three runnables:

– IdleSpeedInit

– IdleSpeed10ms

– IdleSpeed50ms

• As part of the RTOS configuration,
these get mapped to three different
tasks which they share with many
other runnables from other SW-Cs.

• For multi-core processors, tasks get
also mapped to a certain core.

10

AUTOSAR Timing Extension (TIMEX)

• With AUTOSAR 4.0, the Timing Extensions were added allowing precise

timing constraint specification.

• Timing constraints can be applied to

– Timing Description Events

– Timing Description Event Chains

– ordered list of Executable Entities

11

The views addressed by TIMEX

• VfbTiming

timing related to interaction of SW-Cs at VFB

level

• SwcTiming

timing related to the internal behavior of atomic

SW-Cs

• SystemTiming

timing on system level incorporating readily

configured ECUs, busses

• BswModuleTiming

timing related to BSW module internal behavior

• EcuTiming

timing related to everything inside one readily

configured ECU

Max. latency = 2ms

Source: Specification of Timing Extensions, autosar.org

12

TIMEX Constraint Types I

• EventTriggeringConstraint

– Example use-case: supervise jitter

• LatencyTimingConstraint

– Example use-case: avoid loss and duplication of data due to under- and

oversampling and/or jitter

• AgeConstraint

– Example use-case: make sure, data is not too old

• SynchronizationTimingConstrain

– Example use-case: establish and maintain a consistent time base for

the interaction between different subsystems

13

TIMEX Constraint Types II

• OffsetTimingConstraint

– Example use-case: bound the time offset between

the occurrence of two arbitrary timing events

• ExecutionOrderConstraint

– Example use-case: supervise the correct

execution order of runnables

• ExecutionTimeConstraint

• Example use-case: specify the maximum allowed

run-time budget of a process

14

How to use TIMEX

• Option 1: write TIMEX directly i.e.

ARXML

– Well, this certainly is no fun.

• Option 2: use tool support

– ArTime from BMW Car IT: language for

specifying TIMEX requirements. ArTime

is an Artop plug-in

– In-house tools

– Others (not widely used though)

– Well, there is much room for

improvement, right?

• Option 3: ask experts

– Isn’t that frustrating?

• Option 4: give up

– Yes, it is!

<?xml version="1.0" encoding="UTF-8"?>

<AUTOSAR xmlns="http://autosar.org/schema/r4.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://autosar.org/schema/r4.0 autosar_4-0-3.xsd">

 <AR-PACKAGES>

 <AR-PACKAGE>

 <SHORT-NAME>TimeSetExample</SHORT-NAME>

 <ELEMENTS>

 <APPLICATION-SW-COMPONENT-TYPE>

 <SHORT-NAME>PlainVanillaSwc</SHORT-NAME>

 <SHORT-NAME-PATTERN />

 <PORTS>

 <R-PORT-PROTOTYPE>

 <SHORT-NAME>rPortOne</SHORT-NAME>

 <REQUIRED-INTERFACE-TREF DEST="SENDER-RECEIVER-

INTERFACE">/TimeSetExample/srInterfaceOne</REQUIRED-INTERFACE-TREF>

 </R-PORT-PROTOTYPE>

 <P-PORT-PROTOTYPE>

 <SHORT-NAME>pPortOne</SHORT-NAME>

 <PROVIDED-INTERFACE-TREF DEST="SENDER-RECEIVER-

INTERFACE">/TimeSetExample/srInterfaceTwo</PROVIDED-INTERFACE-TREF>

 </P-PORT-PROTOTYPE>

 </PORTS>

 <INTERNAL-BEHAVIORS>

 <SWC-INTERNAL-BEHAVIOR>

 <SHORT-NAME>InternalBehaviorPlainVanillaSwc</SHORT-NAME>

 <RUNNABLES>

 <RUNNABLE-ENTITY>

 <SHORT-NAME>RunnableEntityOne</SHORT-NAME>

 <DATA-READ-ACCESSS>

 <VARIABLE-ACCESS>

 <SHORT-NAME>draDataElementOne</SHORT-NAME>

 </VARIABLE-ACCESS>

 </DATA-READ-ACCESSS>

 <DATA-WRITE-ACCESSS>

 <VARIABLE-ACCESS>

 <SHORT-NAME>dwaDataElementTwo</SHORT-NAME>

 </VARIABLE-ACCESS>

 </DATA-WRITE-ACCESSS>

 </RUNNABLE-ENTITY>

 </RUNNABLES>

 </SWC-INTERNAL-BEHAVIOR>

 </INTERNAL-BEHAVIORS>

 </APPLICATION-SW-COMPONENT-TYPE>

(…) BMW Car IT

Timing

requirements

16

Requirements specification documents

• A good ECU’s requirements specification

is the foundation for sound and safe timing.

• Two types of timing-related requirements

should be addressed:

– Dedicated timing requirements (as far as

they are known)

– Requirements regarding the environment,

methodologies and tools

timing

requirements

methodologies

& tools

requirements

17

Collection of typical timing requirements

• Max. allowed CPU-load

– Present in most specs already

– Specify how it is calculated (which observation

frame TO to be used)!

– Remark: Cannot be specified using TIMEX

• Start-up time (“presence on the bus”)

• End-to-end latency

• Data-age

• Max. CET for TASKs, ISRs, runnables

– Think of budgeting your timing!

 scheduling simulation

• Response-times (at least RT < period)

• Jitter (max. deviation from targeted period)

timing

requirements

Fall-back when TIMEX not appropriate: constraints on timing parameters

e.g.: min/max

constraint on DT

18

Collection of typical tool requirements

• Feature-set

– Scheduling-simulation, -analysis

– Profiling

– Tracing

• Synchronized traces from all cores

• Runnables, functions, any code, data-flow, etc.

without rebuilding the software

• etc.

• Tool availability (OEM, tier-1, both, anybody, …)

– Inhouse tools not appropriate

– Make sure, all relevant data can be exchanged

• Scope

– Scheduling-simulation to the detail-level of…

– Timing verification

• With automated HIL tests

• In the car

methodologies

& tools

requirements

19

BMW: TIMEX in mass-production

• In 2009, BMW used TIMEX/ArTime for a

chassis ECU

– Formal specification of timing requirements

– Seamless interface specification 

verification:

timing requirements were imported and then

verified by T1

– Textual specification of requirements

regarding methodologies & tools

20

Templates for requirements specifications

• Top-up result: text templates for

requirements specifications

– Reuse generic requirements in

future projects

• Excel table with text templates

– including recommendation

according to ASIL level

• Word document with templates

• Some big OEMs follow this

approach already. More and more

follow…

Template

Actual

requirements

specification

21

Tracing:
Timing verification

22

(Scheduling-) tracing vs. timing measurement

• Timing measurement

– produces timing parameters (“numbers”)

but no traces

• Scheduling Tracing

– produces traces which can be viewed
(and from which timing parameters can be derived)

– different kinds exist

• Hardware-based tracing

• Instrumentation based tracing

• Hybrid approaches

• On-chip scheduling tracing (future)

• Profiling

– The process of collecting timing parameters

“ ”

“ ”

23

ARTI

• AUTOSAR currently lacks a standardized interface to get timing data

efficiently out of an ECU

– ORTI is outdated, does not support multi-core and is not AUTOSAR

– PreTaskHook / PostTaskHook are very inefficient and not allowed “on the road”

• In April 2016, an AUTOSAR Concept was initiated:

 ARTI (“AUTOSAR Run-time interface”)

Goal: ORTI successor within AUTOSAR plus efficient support of

– instrumentation based tracing

– non-intrusive on-chip scheduling tracing

– multi-core

– runnables

– AUTOSAR AP

24

Tracing: End-to-end model-check

• On its way from the mind to the microcontroller, an idea

can suffer from transition-errors.

• Tracing allows an end-to-end model-check.

Mind Binary Microcontroller Model C-Code

 End-to-end model-check

Tracing

25

Multi-core example of missing verification

DSPR = data scratch pad RAM DMI = data memory interface

PSPR = program scratch pad RAM PMI = programmemory interface

Core 1 Core 0 DSPR PSPR

Crossbar

D
F

L
A

S
H

P
e

ri
p

h
e

ra
l

System peripheral bus

P
F

L
A

S
H

DSPR PSPR

PMI DMI PMI

Some

code

• Customer moved code from the highly loaded core 0 to core 1

• Surprisingly, the load on core 0 went up!?!

26

Memory read access times: AURIX™ manual

On Chip Bus Access Times

The table describes the CPU

access times in CPU clock cycles

for the TC27x. The access times

are described as maximum CPU

stall cycles where e.g. a data

access to the local DSPR results in

zero stall cycles. Pls. note that the

CPU does not always immediately

stall after the start of a data read

from another SPR due to

instruction pipelining effects. This

means that the average number

will be below the here shown

numbers.

27

Multi-core example of missing verification

data read access DSPR = data scratch pad RAM DMI = data memory interface

program read access PSPR = program scratch pad RAM PMI = programmemory interface

Core 1 Core 0 DSPR PSPR

Crossbar

D
F

L
A

S
H

P
e

ri
p

h
e

ra
l

System peripheral bus

P
F

L
A

S
H

DSPR PSPR

DMI PMI DMI PMI

0
4..7
5
5
5+WS

5
5+WS

5
0

Maximum CPU stall cycles for data reads

Maximum CPU stall cycles for program reads

“Maximum” refers to a situation

where there are no memory access

conflicts. If these occur, the penalty

can be much higher!

28

A report from

the frontline
(plus recommendations)

Mass-production projects

29

OSEK / AUTOSAR task states

ECC = Extended Conformance Class

TASK = container for code, e.g. runnables

30

Timing parameters

Abr. Explanation (EN)

IPT initial pending time

CET
core execution

time

GET
gross execution

time

RT response time

DT delta time

PER period

ST slack time

PRE preemption

JIT jitter

CPU cpu load

DL Deadline

NST Net slack time

31

Typical ECC usage by the RTE

TASK(Task_B)

{

 EventMaskType ev;

 for(;;)

 {

 (void)WaitEvent(Rte_Ev_Cyclic2_Task_B_0_10ms |

 Rte_Ev_Cyclic2_Task_B_0_5ms);

 (void)GetEvent(Task_B, &ev);

 (void)ClearEvent(ev & (Rte_Ev_Cyclic2_Task_B_0_10ms |

 Rte_Ev_Cyclic2_Task_B_0_5ms));

 if ((ev & Rte_Ev_Cyclic2_Task_B_0_10ms) != (EventMaskType)0)

 {

 CanNm_MainFunction();

 CanSM_MainFunction();

 }

 if ((ev & Rte_Ev_Cyclic2_Task_B_0_5ms) != (EventMaskType)0)

 {

 CanTp_MainFunction();

 CanXcp_MainFunction();

 }

}

32

Typical ECC usage by the RTE

TASK(Task_B)

{

 EventMaskType ev;

 for(;;)

 {

 (void)WaitEvent(Rte_Ev_Cyclic2_Task_B_0_10ms |

 Rte_Ev_Cyclic2_Task_B_0_5ms);

 (void)GetEvent(Task_B, &ev);

 (void)ClearEvent(ev & (Rte_Ev_Cyclic2_Task_B_0_10ms |

 Rte_Ev_Cyclic2_Task_B_0_5ms));

 if ((ev & Rte_Ev_Cyclic2_Task_B_0_10ms) != (EventMaskType)0)

 {

 CanNm_MainFunction();

 CanSM_MainFunction();

 }

 if ((ev & Rte_Ev_Cyclic2_Task_B_0_5ms) != (EventMaskType)0)

 {

 CanTp_MainFunction();

 CanXcp_MainFunction();

 }

}

Non terminating ECC task

Task starts here

Task “ends” here (in fact it

switches to state waiting)

Task “restarts” here (in

fact it switched from

waiting via ready to

running) U
s
e

rs
 w

a
n

t
to

 s
e

e
 t
h

e
 b

o
d

y
 o

f
th

e

lo
o

p
 a

s
 o

n
e

 o
c
c
u

rr
e

n
c
e
 o

f
T
a

s
k
_

B

(void)WaitEvent(Can_Ev_TriggerSM_Task_B);

(void)GetEvent(Task_B, &ev);

(void)ClearEvent(ev & (Can_Ev_TriggerSM_Task_B));

“scheduling” WaitEvent

“regular” WaitEvent

 ?? CET ??

33

Previous run-time situation plus “scheduling WaitEvent”

Pseudo-

suspended

Wait

Release

34

Houston, we have a problem

• Since 15 years, GLIWA serves as a team

of firefighters for timing-related problems

• More and more often we see the same

problematic OS configuration:

– non-terminating ECC task

– a second layer of scheduling

 unnecessary complexity

violating the “keep it simple” rule

35

Recent example (there are many alike)

The user was completely unaware of the

overload scenario shown in this T1 trace

36

ErrorHook useless for this setup

void ErrorHook(StatusType status)

{

 switch(status) {

 case E_OS_LIMIT:

 /* failed task activation

 * as a result of an overload

 * situation */

 SystemReset();

 break;

 default:

 break;

 }

}

ErrorHook: called by

the OS, implemented

by the user (of the OS)

User’s intention: Reset

when system is

overloaded

BUT: ErrorHook does

not get called when an

event is re-triggered

37

Summary of disadvantages (of the ECC setup shown)

The setup with non-terminating ECC tasks adds a second layer of

scheduling on top of the OS.

• No supervision through ErrorHook “E_OS_LIMIT”

• ECC in general requires more resources

– more RAM

– more Stack (a separate stack at least per prio, typically per task)

– more run-time

• Difficult to analyze: ARTI will disallow a mixture of the two kinds

of WaitEvent

• Increased complexity without any benefit  error-prone

38

Typical ECC usage by the RTE

TASK(Task_B)

{

 EventMaskType ev;

 for(;;)

 {

 (void)WaitEvent(Rte_Ev_Cyclic2_Task_B_0_10ms |

 Rte_Ev_Cyclic2_Task_B_0_5ms);

 (void)GetEvent(Task_B, &ev);

 (void)ClearEvent(ev & (Rte_Ev_Cyclic2_Task_B_0_10ms |

 Rte_Ev_Cyclic2_Task_B_0_5ms));

 if ((ev & Rte_Ev_Cyclic2_Task_B_0_10ms) != (EventMaskType)0)

 {

 CanNm_MainFunction();

 CanSM_MainFunction();

 }

 if ((ev & Rte_Ev_Cyclic2_Task_B_0_5ms) != (EventMaskType)0)

 {

 CanTp_MainFunction();

 CanXcp_MainFunction();

 }

}

Non terminating ECC task

Task starts here

Task “ends” here (in fact it

switches to state waiting)

Task “restarts” here (in

fact it switched from

waiting via ready to

running) U
s
e

rs
 w

a
n

t
to

 s
e

e
 t
h

e
 b

o
d

y
 o

f
th

e

lo
o

p
 a

s
 o

n
e

 o
c
c
u

rr
e

n
c
e
 o

f
T
a

s
k
_

B

(void)WaitEvent(Can_Ev_TriggerSM_Task_B);

(void)GetEvent(Task_B, &ev);

(void)ClearEvent(ev & (Can_Ev_TriggerSM_Task_B));

“scheduling” WaitEvent

“regular” WaitEvent

 ?? CET ??

39

Recommended configuration

TASK(Task_B_10ms) // BCC1

{

 CanNm_MainFunction();

 CanSM_MainFunction();

 TerminateTask();

}

TASK(Task_B_5ms) // ECC

{

 EventMaskType ev;

 CanTp_MainFunction();

 // the following WaitEvent call is a "regular" WaitEvent

 (void)WaitEvent(Can_Ev_TriggerSM_Task_B);

 (void)GetEvent(Task_B, &ev);

 (void)ClearEvent(ev & (Can_Ev_TriggerSM_Task_B));

 CanXcp_MainFunction();

 TerminateTask();

}

Use BCC1 whenever

possible

40

Conclusion

41

Conclusion

• AUTOSAR TIMEX is powerful, flexible and complicated

– Tool-support for good usability yet to come

• Rather than not specifying any timing requirements

– Define min./max. constraints on timing parameters

– Use semantics provided by tools (e.g. TA Tool Suite)

– Use informal description (text is better than nothing)

• Reuse your requirements: build a pool of requirement templates

• Verify your timing (requirements) with the real system!

• Get the single-core timing right before addressing multi-core.

• Keep it simple! Complexity increases the probability of things

going wrong.

42

Thank you

