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Why care about timing? 

• Proper timing of ECU software is essential for  

– Reliability / Availability 

– Safety (and often also Security) 

 

• Timing problems are very often difficult 

– to identify as such, to debug, to solve 

 

• ISO 26262 requires “freedom of interference” 

– Can only be guaranteed in the absence of timing 

problems 

 

• Multicore 

– If your single-core timing is unstable already, 

multi-core will be a nightmare 

Such indicator 

does not exist 

(unfortunately) 

Single-core Multi-core 
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Software Development Process 

System Tests 

Module Tests 

Integration 

Design 

Implementation 

Requirements 

Timing requirements/ 

timing constraints 

Timing layout, Mapping, 

OS configuration 

Timing debugging/ 

optimization 

Profiling (CETs), timing 

supervision 

Profiling (RTs, CPU-load), 

timing supervision 

Apply your develeopment 

processes and 

methodologies also to the 

timing of your software! 



Who is GLIWA embedded systems? 

• Timing analysis and embedded software expertise since 2003 

– Headquarters located in Weilheim near Munich; GLIWA Ltd. in York 

– 35 employees, many timing experts 

– Average annual growth over the past 7 years: 27,5% 

• Stack Analysis combining static and dynamic methods 

6 



AUTOSAR 

Timing Extensions 

(TIMEX) 
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AUTOSAR overview 

Source: autosar.org Let‘s focus on one ECU (“EcuTiming”) 
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AUTOSAR: ECU example 
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• The SW-C “idle speed control” of an 
engine management ECU is coded in 
three runnables: 

– IdleSpeedInit 

– IdleSpeed10ms 

– IdleSpeed50ms 

 

• As part of the RTOS configuration, 
these get mapped to three different 
tasks which they share with many 
other runnables from other SW-Cs. 

 

• For multi-core processors, tasks get 
also mapped to a certain core. 
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AUTOSAR Timing Extension (TIMEX) 

• With AUTOSAR 4.0, the Timing Extensions were added allowing precise 

timing constraint specification. 

 

• Timing constraints can be applied to 

– Timing Description Events 

– Timing Description Event Chains 

– ordered list of Executable Entities 
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The views addressed by TIMEX 

• VfbTiming 

timing related to interaction of SW-Cs at VFB 

level 

 

• SwcTiming 

timing related to the internal behavior of atomic 

SW-Cs 

 

• SystemTiming 

timing on system level incorporating readily 

configured ECUs, busses 

 

• BswModuleTiming 

timing related to BSW module internal behavior 

 

• EcuTiming 

timing related to everything inside one readily 

configured ECU 

Max. latency = 2ms 

Source: Specification of Timing Extensions, autosar.org 
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TIMEX Constraint Types I 

• EventTriggeringConstraint  

– Example use-case: supervise jitter 

 

• LatencyTimingConstraint 

– Example use-case: avoid loss and duplication of data due to under- and 

oversampling and/or jitter 

 

• AgeConstraint 

– Example use-case: make sure, data is not too old 

 

• SynchronizationTimingConstrain 

– Example use-case: establish and maintain a consistent time base for 

the interaction between different subsystems 
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TIMEX Constraint Types II 

• OffsetTimingConstraint 

– Example use-case: bound the time offset between 

the occurrence of two arbitrary timing events 

 

• ExecutionOrderConstraint 

– Example use-case: supervise the correct 

execution order of runnables 

 

• ExecutionTimeConstraint 

• Example use-case: specify the maximum allowed 

run-time budget of a process 
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How to use TIMEX 

• Option 1: write TIMEX directly i.e. 

ARXML 

– Well, this certainly is no fun. 

• Option 2: use tool support 

– ArTime from BMW Car IT: language for 

specifying TIMEX requirements. ArTime 

is an Artop plug-in 

– In-house tools 

– Others (not widely used though) 

– Well, there is much room for 

improvement, right? 

• Option 3: ask experts 

– Isn’t that frustrating? 

• Option 4: give up 

– Yes, it is! 

<?xml version="1.0" encoding="UTF-8"?> 

<AUTOSAR xmlns="http://autosar.org/schema/r4.0" 

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 

xsi:schemaLocation="http://autosar.org/schema/r4.0 autosar_4-0-3.xsd"> 

  <AR-PACKAGES> 

    <AR-PACKAGE> 

      <SHORT-NAME>TimeSetExample</SHORT-NAME> 

      <ELEMENTS> 

        <APPLICATION-SW-COMPONENT-TYPE> 

          <SHORT-NAME>PlainVanillaSwc</SHORT-NAME> 

          <SHORT-NAME-PATTERN /> 

          <PORTS> 

            <R-PORT-PROTOTYPE> 

              <SHORT-NAME>rPortOne</SHORT-NAME> 

              <REQUIRED-INTERFACE-TREF DEST="SENDER-RECEIVER-

INTERFACE">/TimeSetExample/srInterfaceOne</REQUIRED-INTERFACE-TREF> 

            </R-PORT-PROTOTYPE> 

            <P-PORT-PROTOTYPE> 

              <SHORT-NAME>pPortOne</SHORT-NAME> 

              <PROVIDED-INTERFACE-TREF DEST="SENDER-RECEIVER-

INTERFACE">/TimeSetExample/srInterfaceTwo</PROVIDED-INTERFACE-TREF> 

            </P-PORT-PROTOTYPE> 

          </PORTS> 

          <INTERNAL-BEHAVIORS> 

            <SWC-INTERNAL-BEHAVIOR> 

              <SHORT-NAME>InternalBehaviorPlainVanillaSwc</SHORT-NAME> 

              <RUNNABLES> 

                <RUNNABLE-ENTITY> 

                  <SHORT-NAME>RunnableEntityOne</SHORT-NAME> 

                  <DATA-READ-ACCESSS> 

                    <VARIABLE-ACCESS> 

                      <SHORT-NAME>draDataElementOne</SHORT-NAME> 

                    </VARIABLE-ACCESS> 

                  </DATA-READ-ACCESSS> 

                  <DATA-WRITE-ACCESSS> 

                    <VARIABLE-ACCESS> 

                      <SHORT-NAME>dwaDataElementTwo</SHORT-NAME> 

                    </VARIABLE-ACCESS> 

                  </DATA-WRITE-ACCESSS> 

                </RUNNABLE-ENTITY> 

              </RUNNABLES> 

            </SWC-INTERNAL-BEHAVIOR> 

          </INTERNAL-BEHAVIORS> 

        </APPLICATION-SW-COMPONENT-TYPE> 

(…) BMW Car IT 



Timing 

requirements 
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Requirements specification documents 

• A good ECU’s requirements specification 

is the foundation for sound and safe timing. 

 

 

• Two types of timing-related requirements 

should be addressed: 

 

– Dedicated timing requirements (as far as 

they are known) 

 

– Requirements regarding the environment, 

methodologies and tools 

 

timing 

requirements 

methodologies 

& tools 

requirements 
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Collection of typical timing requirements 

• Max. allowed CPU-load 

– Present in most specs already 

– Specify how it is calculated (which observation 

frame TO to be used)! 

– Remark: Cannot be specified using TIMEX 

• Start-up time (“presence on the bus”) 

• End-to-end latency 

• Data-age 

• Max. CET for TASKs, ISRs, runnables 

– Think of budgeting your timing! 

 scheduling simulation 

• Response-times (at least RT < period) 

• Jitter (max. deviation from targeted period) 

timing 

requirements 

Fall-back when TIMEX not appropriate: constraints on timing parameters 

e.g.: min/max 

constraint on DT 
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Collection of typical tool requirements 

• Feature-set 

– Scheduling-simulation, -analysis 

– Profiling 

– Tracing 

• Synchronized traces from all cores 

• Runnables, functions, any code, data-flow, etc. 

without rebuilding the software 

• etc. 

• Tool availability (OEM, tier-1, both, anybody, …) 

– Inhouse tools not appropriate 

– Make sure, all relevant data can be exchanged 

• Scope 

– Scheduling-simulation to the detail-level of… 

– Timing verification 

• With automated HIL tests 

• In the car 

methodologies 

& tools 

requirements 
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BMW: TIMEX in mass-production 

• In 2009, BMW used TIMEX/ArTime for a 

chassis ECU 

– Formal specification of timing requirements 

– Seamless interface specification  

verification: 

timing requirements were imported and then 

verified by T1 

– Textual specification of requirements 

regarding methodologies & tools 
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Templates for requirements specifications 

• Top-up result: text templates for 

requirements specifications 

– Reuse generic requirements in 

future projects  

 

• Excel table with text templates 

– including recommendation 

according to ASIL level 

 

• Word document with templates 

 

• Some big OEMs follow this 

approach already. More and more 

follow… 

Template 

Actual 

requirements 

specification 
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Tracing: 
Timing verification 
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(Scheduling-) tracing vs. timing measurement 

• Timing measurement 

– produces timing parameters (“numbers”) 

but no traces 

 

• Scheduling Tracing 

– produces traces which can be viewed 
(and from which timing parameters can be derived) 

– different kinds exist 

• Hardware-based tracing 

• Instrumentation based tracing 

• Hybrid approaches 

• On-chip scheduling tracing (future) 

 

• Profiling 

– The process of collecting timing parameters 

“   ” 

“      ” 
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ARTI 

• AUTOSAR currently lacks a standardized interface to get timing data 

efficiently out of an ECU 

– ORTI is outdated, does not support multi-core and is not AUTOSAR 

– PreTaskHook / PostTaskHook are very inefficient and not allowed “on the road” 

 

• In April 2016, an AUTOSAR Concept was initiated: 

 ARTI (“AUTOSAR Run-time interface”) 

Goal: ORTI successor within AUTOSAR plus efficient support of 

– instrumentation based tracing 

– non-intrusive on-chip scheduling tracing 

– multi-core 

– runnables 

– AUTOSAR AP 
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Tracing: End-to-end model-check 

• On its way from the mind to the microcontroller, an idea 

can suffer from transition-errors. 

• Tracing allows an end-to-end model-check. 

Mind Binary Microcontroller Model C-Code 

   End-to-end                                 model-check 

Tracing 
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Multi-core example of missing verification 

DSPR = data scratch pad RAM DMI = data memory interface 

PSPR = program scratch pad RAM PMI = programmemory interface 

Core 1 Core 0 DSPR PSPR 

Crossbar 
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DSPR PSPR 

PMI DMI PMI 

Some 

code 

• Customer moved code from the highly loaded core 0 to core 1 

• Surprisingly, the load on core 0 went up!?! 
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Memory read access times: AURIX™ manual 

On Chip Bus Access Times 

The table describes the CPU 

access times in CPU clock cycles 

for the TC27x. The access times 

are described as maximum CPU 

stall cycles where e.g. a data 

access to the local DSPR results in 

zero stall cycles. Pls. note that the 

CPU does not always immediately 

stall after the start of a data read 

from another SPR due to 

instruction pipelining effects. This 

means that the average number 

will be below the here shown 

numbers. 
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Multi-core example of missing verification 

data read access DSPR = data scratch pad RAM DMI = data memory interface 

program read access PSPR = program scratch pad RAM PMI = programmemory interface 
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Maximum CPU stall cycles for data reads 

Maximum CPU stall cycles for program reads 

“Maximum” refers to a situation 

where there are no memory access 

conflicts. If these occur, the penalty 

can be much higher! 
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A report from 

the frontline 
(plus recommendations) 

Mass-production projects 
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OSEK / AUTOSAR task states 

ECC = Extended Conformance Class 

TASK = container for code, e.g. runnables 
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Timing parameters 

Abr. Explanation (EN) 

IPT initial pending time 

CET 
core execution 

time 

GET 
gross execution 

time 

RT response time 

DT delta time 

PER period 

ST slack time 

PRE preemption 

JIT jitter 

CPU cpu load 

DL Deadline 

NST Net slack time 
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Typical ECC usage by the RTE 

TASK(Task_B) 

{ 

  EventMaskType ev; 

  for(;;) 

  { 

    (void)WaitEvent(    Rte_Ev_Cyclic2_Task_B_0_10ms | 

                        Rte_Ev_Cyclic2_Task_B_0_5ms ); 

 

    (void)GetEvent(Task_B, &ev); 

 

    (void)ClearEvent(ev & ( Rte_Ev_Cyclic2_Task_B_0_10ms | 

                            Rte_Ev_Cyclic2_Task_B_0_5ms )); 

 

    if ((ev & Rte_Ev_Cyclic2_Task_B_0_10ms) != (EventMaskType)0) 

    { 

      CanNm_MainFunction(); 

      CanSM_MainFunction(); 

    } 

 

    if ((ev & Rte_Ev_Cyclic2_Task_B_0_5ms) != (EventMaskType)0) 

    { 

      CanTp_MainFunction(); 

      CanXcp_MainFunction(); 

    } 

} 
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Typical ECC usage by the RTE 

TASK(Task_B) 

{ 

  EventMaskType ev; 

  for(;;) 

  { 

    (void)WaitEvent(    Rte_Ev_Cyclic2_Task_B_0_10ms | 

                        Rte_Ev_Cyclic2_Task_B_0_5ms ); 

 

    (void)GetEvent(Task_B, &ev); 

 

    (void)ClearEvent(ev & ( Rte_Ev_Cyclic2_Task_B_0_10ms | 

                            Rte_Ev_Cyclic2_Task_B_0_5ms )); 

 

    if ((ev & Rte_Ev_Cyclic2_Task_B_0_10ms) != (EventMaskType)0) 

    { 

      CanNm_MainFunction(); 

      CanSM_MainFunction(); 

    } 

 

    if ((ev & Rte_Ev_Cyclic2_Task_B_0_5ms) != (EventMaskType)0) 

    { 

      CanTp_MainFunction(); 

      CanXcp_MainFunction(); 

    } 

} 

Non terminating ECC task 

Task starts here 

Task “ends” here (in fact it 

switches to state waiting) 

Task “restarts” here (in 

fact it switched from 

waiting via ready to 

running) U
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(void)WaitEvent( Can_Ev_TriggerSM_Task_B ); 

(void)GetEvent(Task_B, &ev); 

(void)ClearEvent(ev & ( Can_Ev_TriggerSM_Task_B )); 

“scheduling” WaitEvent 

“regular” WaitEvent 

 ?? CET ?? 
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Previous run-time situation plus “scheduling WaitEvent” 

Pseudo-

suspended 

Wait 

Release 
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Houston, we have a problem 

• Since 15 years, GLIWA serves as a team 

of firefighters for timing-related problems 

 

• More and more often we see the same 

problematic OS configuration: 

– non-terminating ECC task 

– a second layer of scheduling 

 

 unnecessary complexity 

violating the “keep it simple” rule 



35 

Recent example (there are many alike) 

The user was completely unaware of the 

overload scenario shown in this T1 trace 
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ErrorHook useless for this setup 

void ErrorHook(StatusType status) 

{ 

  switch(status) { 

    case E_OS_LIMIT: 

      /* failed task activation 

       * as a result of an overload 

       * situation  */ 

      SystemReset(); 

      break; 

    default: 

      break; 

  } 

} 

 

ErrorHook: called by 

the OS, implemented 

by the user (of the OS) 

User’s intention: Reset 

when system is 

overloaded 

BUT: ErrorHook does 

not get called when an 

event is re-triggered 
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Summary of disadvantages (of the ECC setup shown) 

The setup with non-terminating ECC tasks adds a second layer of 

scheduling on top of the OS. 

 

• No supervision through ErrorHook “E_OS_LIMIT” 

 

• ECC in general requires more resources 

– more RAM 

– more Stack (a separate stack at least per prio, typically per task) 

– more run-time 

 

• Difficult to analyze: ARTI will disallow a mixture of the two kinds 

of WaitEvent 

 

• Increased complexity without any benefit  error-prone 
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Typical ECC usage by the RTE 

TASK(Task_B) 

{ 

  EventMaskType ev; 

  for(;;) 

  { 

    (void)WaitEvent(    Rte_Ev_Cyclic2_Task_B_0_10ms | 

                        Rte_Ev_Cyclic2_Task_B_0_5ms ); 

 

    (void)GetEvent(Task_B, &ev); 

 

    (void)ClearEvent(ev & ( Rte_Ev_Cyclic2_Task_B_0_10ms | 

                            Rte_Ev_Cyclic2_Task_B_0_5ms )); 

 

    if ((ev & Rte_Ev_Cyclic2_Task_B_0_10ms) != (EventMaskType)0) 

    { 

      CanNm_MainFunction(); 

      CanSM_MainFunction(); 

    } 

 

    if ((ev & Rte_Ev_Cyclic2_Task_B_0_5ms) != (EventMaskType)0) 

    { 

      CanTp_MainFunction(); 

      CanXcp_MainFunction(); 

    } 

} 

Non terminating ECC task 

Task starts here 

Task “ends” here (in fact it 

switches to state waiting) 

Task “restarts” here (in 

fact it switched from 

waiting via ready to 

running) U
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(void)WaitEvent( Can_Ev_TriggerSM_Task_B ); 

(void)GetEvent(Task_B, &ev); 

(void)ClearEvent(ev & ( Can_Ev_TriggerSM_Task_B )); 

“scheduling” WaitEvent 

“regular” WaitEvent 

 ?? CET ?? 
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Recommended configuration 

TASK(Task_B_10ms) // BCC1 

{ 

  CanNm_MainFunction(); 

  CanSM_MainFunction(); 

  TerminateTask(); 

} 

 

TASK(Task_B_5ms) // ECC 

{ 

  EventMaskType ev; 

  CanTp_MainFunction(); 

  // the following WaitEvent call is a "regular" WaitEvent 

  (void)WaitEvent( Can_Ev_TriggerSM_Task_B ); 

  (void)GetEvent(Task_B, &ev); 

  (void)ClearEvent(ev & ( Can_Ev_TriggerSM_Task_B )); 

  CanXcp_MainFunction(); 

  TerminateTask(); 

} 

Use BCC1 whenever 

possible 
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Conclusion 
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Conclusion 

• AUTOSAR TIMEX is powerful, flexible and complicated 

– Tool-support for good usability yet to come 

 

• Rather than not specifying any timing requirements 

– Define min./max. constraints on timing parameters 

– Use semantics provided by tools (e.g. TA Tool Suite) 

– Use informal description (text is better than nothing) 

 

• Reuse your requirements: build a pool of requirement templates 

 

• Verify your timing (requirements) with the real system! 

 

• Get the single-core timing right before addressing multi-core. 

 

• Keep it simple! Complexity increases the probability of things 

going wrong. 
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Thank you 


