
A New Worst-Case Timing
Approach for Automotive

Dr. Nicholas Merriam

Worst is not always best

Contents

• Introduction, motivation

• Basics of (Worst-Case) Timing Analysis

• Why today’s WCRT Analysis is problematic

• Why measurement and modelling are best friends

• Summary

2

Introduction

3

Why care about timing?

• No safe and highly available embedded
software without rock-solid timing.

• If you don’t properly care about timing, it will
get you in the dark (= late in the project).

• Corrected timing can save $$$
(cf. “Timing analysis saves OEM €12m” in Peter Gliwa’s
book)

4

Why care about worst-case timing?

• Safety v. Availability
• Fail-safe

• Timing is highly variable
• External variation

• Input signals arrive with jitter

• Internal variation

• Execution time varies, depending on software path

• Response time varies, depending on pre-emption

• How many cases for ISO 26262 ASIL D/C/B/A?
• Consider a single, worst case

• Argue that other cases will function at least as well

5

Now I am safe but I
cannot move

anymore!

Basics of Timing Analysis

6

What is this?

7

The V-model as we know it

8

It is applicable to timing as well!

9

Apply your development

processes and

methodologies also to the

timing of your software!

What are WCET and WCRT?

WCET = Worst Case Execution Time
= theoretical maximum CET

WCRT = Worst Case Response Time
= theoretical maximum RT

DL = Deadline (max. allowed RT)
timing constraint, timing
requirement

10

Analysis Techniques: Summary

• Static Code Analysis
• How? Analyze binary

• What? Provide WCET

• Code Simulation
• How? Simulate processor,

execute target machine code

• What? Run target code on x86

• Measurement
• How? Instrument SW (T1.cont)

• What? Get timing parameters,
supervise SW

• SW-based Tracing
• How? Instrument SW (T1.scope)

• What? Get scheduling traces, see
‘the real thing’

• Scheduling simulation
• How? Simulate OS

• What? Explore scheduling on x86

• Static Scheduling Analysis
• How? Mathematical approach

• What? Provide WCRT

11

Overview Analysis Techniques

12

Model-based v. real world

• Model-based
• Available before real hardware

• Available before real software

• Complex model is expensive

• Requires validation of model

• No embedded hardware needed

• Analysis can be very fast

• Analysis is easy to automate

• Modelling is recommended

• Real world
• Real hardware or detailed simulator

• Limited before real software

• Accurate measurement is not easy

• Requires validation of test cases

• Expensive hardware environment

• Testing can be time-consuming

• Hard to automate (e.g. test drive)

• Some test evidence is mandated

13

Static Code Analysis (WCET)

Or (more simple):

ELF in

WCET out

Static code

analysis

14

Static Code Analysis (WCET)

void someFunction(void)
{

...
}

15

Static Scheduling Analysis (WCRT)

Or (more simple):

OS cfg in

WCRT out

Static

scheduling

analysis

WCET in

16

Scheduling Simulation

Or (more simple):

OS cfg in

Traces out

Scheduling

simulation

min/max CET in

Profiling out

17

Why today’s WCRT
Analysis is problematic

18

What happens in real projects?

• GLIWA does a lot of ‘fire-fighting’:
projects with timing issues ask for help.

• OEMs require more and more pessimism
(more is not always better!)

• Result: loss of focus; some really
important timing aspects get neglected.

19

So
u

rc
e:

 B
SE

-G
al

er
ie

Additional constraints: time consuming

• Dramatic over-estimation without additional
information
• Aperiodic tasks

• Mutual exclusion

• Dangerous under-estimation without
additional information
• Jitter

• Clock-drift

20

V
ec

to
rS

to
ck

.c
o

m

How deadlines are applied

• Today’s approach

• Timing requirement is defined, e.g. DLTaskB = 1ms

• This translates to RTTaskB < 1ms

• For safety-relevant projects, this is interpreted as WCRTTaskB < 1ms

• Since the WCRT is not available, it is implemented as upper_bound < 1ms

21

What is it that we need?

Definition ‘Real world WCRT’
Looking back at the end of the life-
time of all units: greatest RT value
which ever occurred.
Let’s call it RWCRT.

22

What does ISO26262 require?
For ASIL-D, less than 10 FIT
meaning less than 10 faults in 109

hours of operation

→ Impossible to translate

to a timing constraint

= Unknown when developing

= Known when developing

Our constraint is actually
DL = 1ms → RWCRT < 1ms

RT

For WCET, see Peter Gliwa’s talk

• Slides
https://gliwa.com/downloads/EMCC2022_WCET_Peter_Gliwa.pdf

• Video
Check out GLIWA’s
YouTube channel!

23

Why measurement and
modelling are best friends

24

Model-based real world

• Model-based
• Available before real hardware

• Available before real software

• Validates testing

• No embedded hardware needed

• Maximize hardware availability

• Analysis can be very fast

• Analysis is easy to automate

• Real world
• Real hardware or detailed simulator

• Limited before real software

• Validates model

• Expensive hardware environment

• But no additional cost

• Testing can be time-consuming

• Hard to automate (e.g. test drive)

25

Validation

• Models contain unsafe errors
• Not always trivial errors

• Measured results can point to an
error in the model

• Models contain unnecessary
pessimism
• Measured results can point to a

safe improvement in the model

• Mutual exclusion

• Start engine in test mode

• Measurements omit test cases
• Modelled results can point to a

missing test case

• Measurement granularity is
hard to guess
(tasks/runnables?)
• Modelled results can better focus

measurement

26

A new approach to embedded timing

1. Use measurement and model-based methods

2. Use measurements to refine models and
models to refine measurements

3. Make timing consideration a first-class part of embedded software
• …rather than hoping to get the seal of approval at the end of development.

27

I have a dream…

• In this dream, we get together
• OEMs

• Tier-1s

• Timing tool vendors

• Timing pioneers (for example academics)

• We discuss
• The facts

• The needs

• The requirements

• Possible solutions

28

Fr
ee

p
h

o
to

s

Defensive code with respect to timing

• On code-level • On scheduling-level

→ timing protection (e.g.
through AUTOSAR or T1.cont)

void someFunction(void)
{

unsigned int i;
WCET_ASSERT(a <= 42);
for (i=0; i<a; i++) {

...
}

}

Defensive code
Check inputs even when they are expected to be correct / in range.

29

Timing integration in development

• Unit/module tests
• What is the timing with no pre-emption, no

memory conflicts, no cache misses? Is it already
close to the limit?

• Beware of premature optimization

30

Traces

Possible inputs for static scheduling analysis

31

OS cfg in

WCRT out

Static

scheduling

analysis

WCET

ELF in

Static code

analysis

P
u

re
ly

 S
ta

ti
c

A
n

al
ys

is
 (

W
C

ET
 +

 W
C

R
T)

WCRT out

Static

scheduling

analysis

Traces

Tracing

P
u

re
ly

 S
ta

ti
c

A
n

al
ys

is
 (

W
C

ET
 +

 W
C

R
T)

Summary

32

• Embedded Software Timing does matter!

• Addressing a purely theoretical WCRT binds resources
and moves the focus away from real timing issues.

• Use the best of each: combine model-based
techniques with measurement/tracing (not just for
verification!)

• Let’s get together and think about a more sensible
future worst case timing approach.

33

Freepik

Thank you

34

