
Peter Gliwa, Dr. Nicholas Merriam, Alexander Stassis – Version 1, CC6

Best practice for

timing optimization

Optimization on RTOS-level and code-level

Embedded Software Engineering Congress 2018

Contents

• Summary

• Introduction

• Timing analysis techniques

• Performance optimization

– On RTOS level

– On code level

– Memory usage

• Conclusion

2

Summary

Summary on performance optimization

• There are few simple rules for achieving

good performance.

– Consider and – if possible – follow them.

– Most of the optimization potential cannot

be easily exploited.

 detailed analysis and detailed

knowledge required

• Rule number one :

optimization always top down

– Looking at a single ECU, start at the

RTOS level

– When done, move down to the code level

4

top

down

Does not

exist! *

(*) cf. single-core to multi-core C2C compiler, automatic debugger, etc.

Introduction
Who is GLIWA?

Who is GLIWA embedded systems?

• Timing analysis expertise since 2003

– hundreds of mass-production projects

– located near Munich in Weilheim i.OB., Germany

– Ca. 40 employees with many embedded timing experts

– Average annual growth over the past 8 years: >25%

• T1.stack: Stack Analysis combining static and dynamic methods

• T1.accessPredictor: “offline-MPU” and more

6

Who is Peter Gliwa?

• CEO and owner of GLIWA embedded systems

• Owner of GLIWA Inc. and GLIWA engineering

• Actively coaching/consulting international

automotive OEMs and Tier-1s

• AUTOSAR work-package leader of AUTOSAR

work-package “ARTI”

• 1998 – 2003: RTOS development/product-

management at ETAS

• 1995 – 2003: BOSCH

• Degree in Electronic Engineering

Timing analysis

techniques

Development phase Level

Two dimensions: level and development phase

• Early phase

– timing requirements

– Timing design

– Hardware selection

– OS-config, mapping to cores

• Integration phase

– Debug

– Optimize

• Late phase

– Verify timing against
requirements ( tests)

– Document actual timing

– Permanently supervise timing
on ECU

• Network level

– inter ECU communication

– end-to-end-timing

– typically OEM business

• RTOS level (also: scheduling level)

– one scheduling entity

– scheduling effects

– typically tier-1 business

• code level

– fragment of code (e.g. function)

– Scheduling not regarded.

– core execution time most important
result

9

Two dimensions: level and development phase

10

Overview of timing analysis techniques

11

Static code analysis

• Main result: safe upper bound

for the WCET for a given code

fragment, e.g. a function

• Annotations required

for many indirect calls and

loop bounds

• Dramatic overestimation for

multi-core

 theoretical WCET irrelevant

12

Static code

analysis
Source

code

ELF

Anno-

tations

Code simulation

• Code simulators simulate the execution of given binary code for a

certain processor.

• Wide range available:

– from simple instruction set simulators to

– complex simulators considering also pipeline- and cache-effects

• Code simulators rarely used for timing analysis.

13

Measurement / Tracing

• Observation of the real (executing) system

• For dedicated events, time stamps together
with event information are placed in a trace
buffer (for later analysis/reconstruction).

• Wide range of granularity:

– from fine grained like for flow traces
(instruction trace) to

– schedule traces showing tasks/interrupts only

• Measurement/tracing through
instrumentation (i.e. software modification)
or using special hardware (on-chip/off-chip)

14

15

Measurement vs. Tracing

“ ”

“ ”

• Timing measurement

– produces timing parameters

(“numbers”) but no traces

• Scheduling Tracing

– produces traces which can be

viewed and from which timing

parameters can be derived

Static scheduling analysis

• Input: scheduling model and min/max execution times

• Calculates (no simulation!) the worst case scheduling
situation for a given timing parameter, e.g. the WCRT of
task A.

• No code or hardware required.

• The execution times fed into the analysis can be either
budgets, estimations, or outputs from other tools, e.g.
statically analyzed BCET/WCET or traced/measured data.

16

Static scheduling simulation

• Similar functionality as the

scheduling analysis

• Instead of calculating the results,

they simulate run time behavior

• Main output: the observed timing

information and generated

traces

17

Overview of timing analysis techniques

Pure

model

based

techniques

Simulation

based

techniques

Observation

of the real

world

18

Typically

early

development

phase

Integration/late

development

phase

CET = CET1 + CET2

Abr. Explanation (EN) Erklärung (DE)

IPT initial pending time Initialwartezeit

CET
core execution

time
Nettolaufzeit

GET
gross execution

time
Bruttolaufzeit

RT response time Antwortzeit

DT delta time Deltazeit

PER period Periode

ST slack time Restzeit

PRE preemption Unterbrechungszeit

JIT jitter Jitter

CPU cpu load CPU Auslastung

DL Deadline Deadline

NST Net slack time Nettorestzeit
NST = NST 1 + NST2

Task A

Task B

Task C

t

IPT

CET1

GET

RT

PRE

DL

DT

PER

ST

NST1 NST2

CET2

19

Timing parameters

Timing Poster – get your copy!

20

Performance

optimization
RTOS level

(Incomplete) collection of optimization aspects

• Rule number one :

optimization always top down

– Looking at a single ECU, start at the

RTOS level

– When done, move down to the code level

• In the following we will collect some

– RTOS level optimization approaches

– Code level optimization approaches

22

top

down

RTOS level best practices

• Keep it simple!

– Try to avoid ECC (extended conformance class)

• unfortunately, most RTE generators advise you to use ECC

– Do not use multiple task activations

• Use cooperative (“non preemptive/non preemptable”) scheduling

– Reduce stack consumption  save RAM

– Avoid protection mechanisms (data copies for data consistencies)

– Reduce the risk of typical run-time problems

• Come up with a sound timing design

– Allocate timing budgets

– Use scheduling simulation/scheduling analysis for complex timing

23

Positive example: BMW Active Steering

• Highly loaded (up to 93%)

• As a result of optimizations, a less powerful (and cheaper) processor

than in the previous generation could be used

• Cooperative scheduling avoiding costly protection mechanisms

RTOS level optimization approaches

• Move code to slower tasks

• Configure delays of periodic tasks so that the load spreads

• Understand the scheduling (and the hot-spots; see next slide)

• Multicore

– Consider using one core for handling ISRs and “fast tasks”

– The other core(s) do the “number crunching” exploiting the cache and

the pipeline more efficiently

– Avoid busy-spinning

• Search/replace __disable() / __enable() with GetSpinlock() /

ReleaseSpinnLock() is a very bad idea

• consider following the LET (“Logical Execution Time”) concept

25

Overload situation the PL was not even aware of

26

Performance

optimization
Code level

Code level optimization approaches

• Move frequently addressed symbols (code, data) to fast memory

• Use (and cross-check!) dedicated compiler optimizations

• Manual optimization

– Inline functions

– Alignment

• Aligned data allows faster code

• Code aligned to cache-lines can increase speed

– Exploit specialized machine code

• Example: saturation instruction avoids efficient wrap-around protection

28

In the following we will look at the optimization of the

well-known memcpy function copying 1024 bytes.

memcpy

29

/*------------------------- The ‘standard’ memcpy routine ----------------------------

* Parameters:

* *pDest - The destination to which data is copied across to

* *pSrc - The source of the data to be copied across. The addresses of

* pSrc and pDest are passed as arguments. This avoids having

* to pass the complete arrays in as arguments in order to

* do manipulations. Note, they are void pointers to allow any type

* of array to be passed.

* nBytes - The number of bytes to copy from pSrc to pDest

* Remember that a 'char' is 1 byte and an 'int' is 4 bytes (or a word)

---/

void *memcpy_(void *pDest, void const *pSrc, unsigned short nBytes)

{

 /* Assign pSrc and pDest to 'char' Auto-variable pointers on the stack. This

 allows byte per byte transfer */

 char *pD = pDest;

 char const *pS = pSrc;

 /* Iterate through the number of bytes to copy across, decrementing nBytes

 until it reaches zero */

 while(nBytes--)

 {

 /* Copy one byte from the source to the destination and then

 increment the index */

 *pD++ = *pS++; /* E.g. pD[i++] = pS[i++]; */

 }

 return pDest;

}

Step 0: non optimized version (starting point)

Assembly code

30

80006e6e <memcpy_>:

80006e6e: 40 42 mov.aa %a2,%a4

80006e70: a0 0f mov.a %a15,0

80006e72: 01 f2 10 40 add.a %a4,%a2,%a15

80006e76: 01 f5 10 30 add.a %a3,%a5,%a15

80006e7a: 9f 04 03 80 jned %d4,0,80006e80 <memcpy_+0x12>

80006e7e: 00 90 ret

80006e80: 79 3f 00 00 ld.b %d15,[%a3]0

80006e84: 2c 40 st.b [%a4]0,%d15

80006e86: b0 1f add.a %a15,1

80006e88: 3c f5 j 80006e72 <memcpy_+0x4>

Default Memory Locations CET to Copy 1024 Bytes CET to Copy 1 Byte

Function Code pDest pSrc nBytes MAX MIN MAX MIN

Cached Flash0 LMU RAM Cached Flash0 LMU RAM 121us 030ns 114us 395ns 118,2ns 111,7ns

CET per Byte

• No post-increment

addressing

• No Loop instruction

Memory read access times: AURIX™ manual

On Chip Bus Access Times

The table describes the CPU

access times in CPU clock cycles

for the TC27x. The access times

are described as maximum CPU

stall cycles where e.g. a data

access to the local DSPR results in

zero stall cycles. Pls. note that the

CPU does not always immediately

stall after the start of a data read

from another SPR due to

instruction pipelining effects. This

means that the average number

will be below the here shown

numbers.

data read access DSPR = data scratch pad RAM DMI = data memory interface

program read access PSPR = program scratch pad RAM PMI = programmemory interface

AURIX™ memory read access times: interpretation

Core Core DSPR PSPR

Crossbar

D
F

L
A

S
H

P
e

ri
p

h
e

ra
l

System peripheral bus

P
F

L
A

S
H

DSPR PSPR

DMI PMI DMI PMI

0
4..7
5
5
5+WS

5
5+WS

5
0

Maximum CPU stall cycles for data reads

Maximum CPU stall cycles for program reads

“Maximum” refers to a situation

where there are no memory access

conflicts. If these occur, the penalty

can be much higher!

Step 1: Use different memory locations

Code/Data Memory Locations
CET per byte for

1024 bytes

Function Code pDest pSrc

Cached Flash0

LMU RAM Cached Flash 111.7ns

LMU RAM LMU RAM 125.0ns

Local DSPR0 Local DSPR0 100.6ns

Local PSPR0

LMU RAM Cached Flash 106.4ns

LMU RAM LMU RAM 135.8ns

Local DSPR0 Local DSPR0 100.6ns

Un-Cached Flash0 Local DSPR0 Local DSPR0 205.1ns

PSPR1 Local DSPR0 Local DSPR0 149.4ns

33

Baseline

Fastest

Slowest

Step 2: compiler optimizations

• Tasking

– Function Specific Option Pragmas

• #pragma optimize ‘o’, where o stands for option

• #pragma endoptimize. To confine the optimization option

– Desirable:

1. Use post-incrementing load and store operations

2. Use Loop instruction

3. Use loop unrolling

• These compiler optimizations are only a subset of what was actually

analyzed

34

Step 2: compiler optimizations (results)

• Use post-incrementing load and store operations

• Use Loop instruction

• Tasking can achieve both at the same time using a compiler

environment option –t0, which means to optimize for speed

• Assembly:

35

8020011c 40 4f memcpy_: mov.aa a15,a4

8020011e 8e 46 jlez d4,0x8020012a

80200120 60 42 mov.a a2,d4

80200122 b0 f2 add.a a2,#-0x1

80200124 04 5f ld.bu d15,[a5+]0x1

80200126 24 ff st.b [a15+]0x1,d15

80200128 fc 2e loop a2,0x80200124

8020012a 40 42 mov.aa a2,a4

8020012c 00 90 ret

CET per Byte for 1024

Compiler Description MAX MIN

Tasking
Enabling post-increment load and store operations

and Loop instruction
65.4ns 59.6ns

Step 3: manual optimizations

• Checking Data Alignment

– If aligned, we can copy across words each time using word size

instructions.

36

 /* Divide nBytes by 4. This is to get rid of EXTR.U operation and to get word decrements.

 E.g. 16 bytes is 4 words.. */

 GTF_uint32_t wordCount = nBytes >> 2u;

 /* Check for word alignment. Casting is needed for bitwise manipulation */

 if(0u == (((GTF_uint32_t)pDest | (GTF_uint32_t)pSrc | nBytes) & 3u))

 {

 /* Assign Word Pointers */

 GTF_uint32_t *pD = (GTF_uint32_t *)pDest;

 GTF_uint32_t const *pS = (GTF_uint32_t const *)pSrc;

 while(0u != wordCount--)

 {

 *pD++ = *pS++; /* Copy words (4 bytes at a time..not 1 byte) across */

 }

 }

 /* Else do Manual Loop Unrolling with Switch Case Above */

 else

 {

Step 3: manual optimizations (results)

37

CET per byte

for 1024 bytes

Compiler Description

Other (not

TASKING)

Manual Loop Unrolling Depth

Of 4 Switch Case below
65.4ns

Manual Loop Unrolling Depth

of 4 Switch Case above
63.5ns

Manual Loop Unrolling Depth

of 4 Switch Case above and

Removing EXTR.U operation

63.5ns

Duff’s Device 71.3ns

Copying Words across. Union declared

outside the function
18.6ns

TASKING

Manual Loop Unrolling Depth

Of 4 Switch Case below
58.6ns

Manual Loop Unrolling Depth

of 4 Switch Case above
59.6ns

Manual Loop Unrolling Depth

of 4 Switch Case above and

Removing EXTR.U operation

55.8ns

Duff’s Device 57.6ns

Copying Words across. Union declared

outside the function
14.7ns

Good result!

Best result!

Spinlocks
and how not to use them

Spinlocks – Overview

• GetSpinlock obtains a spinlock when no other core is using it. If

another core is using it then GetSpinlock loops (spins) until the

spinlock can be correctly obtained.

• TryToGetSpinlock is a non-blocking version of GetSpinlock. It

always returns immediately with no spinning.

• ReleaseSpinlock releases a spinlock. Obtained spinlocks must be

released in the correct order, the last obtained spinlock must be

released first.

StatusType GetSpinlock (SpinlockIdType SpinlockId);

StatusType TryToGetSpinlock (SpinlockIdType SpinlockId,

 TryToGetSpinlockType* Success);

StatusType ReleaseSpinlock (SpinlockIdType SpinlockId);

Spinlocks – problematic straight forward usage

Imagine a situation where a Task gets interrupted by an ISR while holding a

spinlock. Although not related at all to the spinlock, the ISR can now delay

TASKs on other cores waiting (i.e. spinning) for the spinlock.

GetSpinlock(spinlock);

... /* do what you need to do with spinlock obtained */

ReleaseSpinlock(spinlock);

prio

t

TASK

ISR

prio

t

TASK

Core 0

Core 1

Spinlocks – pseudo clever usage

To overcome the problem, we could disable/enable interrupts. However, this might lead

to a considerable delay of the ISR caused by TASKs on other cores.

DisableOSInterrupts();

GetSpinlock(spinlock);

... /* do what you need to do with spinlock obtained */

ReleaseSpinlock(spinlock);

EnableOSInterrupts();

prio

t

TASK

ISR

prio

t

TASK

Core 0

Core 1

Spinlocks – TryToGetSpinlock: best practice

• Are we there yet? Is this the best implementation?

• Actually no.

• The best spinlock is the one you do not need!

TryToGetSpinlockType success;

DisableOSInterrupts();

(void)TryToGetSpinlock(spinlock, &success);

while(TRYTOGETSPINLOCK_NOSUCCESS == success)

{

 EnableOSInterrupts();

 /* Allow preemption. */

 DisableOSInterrupts();

 (void)TryToGetSpinlock(spinlock, &success);

}

/* Region with spinlock obtained and interrupts disabled. */

... /* do what you need to do with spinlock obtained */

ReleaseSpinlock();

EnableOSInterrupts();

The Multi-core Poster – Multi-core on one sheet of paper

Conclusion

45

Tracing: End-to-end model-check

• On its way from the mind to the microcontroller, an idea

can suffer from transition-errors.

• Tracing allows an end-to-end model-check.

Mind Binary Microcontroller Model C-Code

 End-to-end model-check

Tracing

Conclusion

• Performance optimization is complex

– there is no “press this button to get the perfect software” solution

• However, tools can significantly reduce the effort

– In the early phase, in the integration phase, in the late phase

– On RTOS level, on code level

• Understand your system before starting optimizing

– Find the critical hot-spots

46

Thank you

