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Summary 



Summary on performance optimization 

• There are few simple rules for achieving 

good performance. 

– Consider and – if possible – follow them. 

– Most of the optimization potential cannot 

be easily exploited. 

 detailed analysis and detailed 

knowledge required 

 

• Rule number one : 

optimization always top down 

– Looking at a single ECU, start at the 

RTOS level 

– When done, move down to the code level 
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top 

down 

Does not 

exist! * 

(*) cf. single-core to multi-core C2C compiler, automatic debugger, etc. 



Introduction 
Who is GLIWA? 



Who is GLIWA embedded systems? 

• Timing analysis expertise since 2003 

– hundreds of mass-production projects 

– located near Munich in Weilheim i.OB., Germany 

– Ca. 40 employees with many embedded timing experts 

– Average annual growth over the past 8 years: >25% 

• T1.stack: Stack Analysis combining static and dynamic methods 

• T1.accessPredictor: “offline-MPU” and more 
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Who is Peter Gliwa? 

• CEO and owner of GLIWA embedded systems 

• Owner of GLIWA Inc. and GLIWA engineering 

• Actively coaching/consulting international 

automotive OEMs and Tier-1s 

• AUTOSAR work-package leader of AUTOSAR 

work-package “ARTI” 

• 1998 – 2003: RTOS development/product-

management at ETAS 

• 1995 – 2003: BOSCH 

• Degree in Electronic Engineering 



Timing analysis 

techniques 



Development phase Level 

Two dimensions: level and development phase 

• Early phase 

– timing requirements 

– Timing design 

– Hardware selection 

– OS-config, mapping to cores 

 

• Integration phase 

– Debug 

– Optimize 

 

• Late phase 

– Verify timing against 
requirements ( tests) 

– Document actual timing 

– Permanently supervise timing 
on ECU 

• Network level 

– inter ECU communication 

– end-to-end-timing 

– typically OEM business 

 

• RTOS level (also: scheduling level) 

– one scheduling entity 

– scheduling effects 

– typically tier-1 business 

 

• code level 

– fragment of code (e.g. function) 

– Scheduling not regarded. 

– core execution time most important 
result 
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Two dimensions: level and development phase 
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Overview of timing analysis techniques 
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Static code analysis 

• Main result: safe upper bound 

for the WCET for a given code 

fragment, e.g. a function 

 

• Annotations required 

for many indirect calls and 

loop bounds 

 

• Dramatic overestimation for 

multi-core 

 theoretical WCET irrelevant 
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Static code 

analysis 
Source 

code 

ELF 

Anno-

tations 



Code simulation 

• Code simulators simulate the execution of given binary code for a 

certain processor. 

 

• Wide range available: 

– from simple instruction set simulators to 

– complex simulators considering also pipeline- and cache-effects 

 

• Code simulators rarely used for timing analysis. 
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Measurement / Tracing 

• Observation of the real (executing) system 

 

• For dedicated events, time stamps together 
with event information are placed in a trace 
buffer (for later analysis/reconstruction). 

 

• Wide range of granularity: 

– from fine grained like for flow traces 
(instruction trace) to 

– schedule traces showing tasks/interrupts only 

 

• Measurement/tracing through 
instrumentation (i.e. software modification) 
or using special hardware (on-chip/off-chip) 
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Measurement vs. Tracing 

“   ” 

“      ” 

• Timing measurement 

– produces timing parameters 

(“numbers”) but no traces 

 

 

 

 

• Scheduling Tracing 

– produces traces which can be 

viewed and from which timing 

parameters can be derived 



Static scheduling analysis 

• Input: scheduling model and min/max execution times 

• Calculates (no simulation!) the worst case scheduling 
situation for a given timing parameter, e.g. the WCRT of 
task A. 

• No code or hardware required. 

• The execution times fed into the analysis can be either 
budgets, estimations, or outputs from other tools, e.g. 
statically analyzed BCET/WCET or traced/measured data.  
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Static scheduling simulation 

• Similar functionality as the 

scheduling analysis 

• Instead of calculating the results, 

they simulate run time behavior 

• Main output: the observed timing 

information and generated 

traces  
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Overview of timing analysis techniques 

Pure 

model 

based 

techniques 

Simulation 

based 

techniques 

Observation 

of the real 

world 
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Typically 

early 

development 

phase 

Integration/late 

development 

phase 

 



CET = CET1 + CET2 

Abr. Explanation (EN) Erklärung (DE) 

IPT initial pending time Initialwartezeit 

CET 
core execution 

time 
Nettolaufzeit 

GET 
gross execution 

time 
Bruttolaufzeit 

RT response time Antwortzeit 

DT delta time Deltazeit 

PER period Periode 

ST slack time Restzeit 

PRE preemption Unterbrechungszeit 

JIT jitter Jitter 

CPU cpu load CPU Auslastung 

DL Deadline Deadline 

NST Net slack time Nettorestzeit 
NST = NST 1 + NST2 

Task A 

Task B 

Task C 

t 

IPT 

CET1 

GET 

RT 

PRE 

DL 

DT 

PER 

ST 

NST1 NST2 

CET2 
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Timing parameters 



Timing Poster – get your copy! 
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Performance 

optimization 
RTOS level 



(Incomplete) collection of optimization aspects 

• Rule number one : 

optimization always top down 

– Looking at a single ECU, start at the 

RTOS level 

– When done, move down to the code level 

 

• In the following we will collect some 

– RTOS level optimization approaches 

– Code level optimization approaches 
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top 

down 



RTOS level best practices 

• Keep it simple! 

– Try to avoid ECC (extended conformance class) 

• unfortunately, most RTE generators advise you to use ECC 

– Do not use multiple task activations 

 

• Use cooperative (“non preemptive/non preemptable”) scheduling 

– Reduce stack consumption  save RAM 

– Avoid protection mechanisms (data copies for data consistencies) 

– Reduce the risk of typical run-time problems 

 

• Come up with a sound timing design 

– Allocate timing budgets 

– Use scheduling simulation/scheduling analysis for complex timing 
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Positive example: BMW Active Steering 

• Highly loaded (up to 93%) 

• As a result of optimizations, a less powerful (and cheaper) processor 

than in the previous generation could be used 

• Cooperative scheduling avoiding costly protection mechanisms 



RTOS level optimization approaches 

• Move code to slower tasks 

• Configure delays of periodic tasks so that the load spreads 

• Understand the scheduling (and the hot-spots; see next slide) 

• Multicore 

– Consider using one core for handling ISRs and “fast tasks” 

– The other core(s) do the “number crunching” exploiting the cache and 

the pipeline more efficiently 

– Avoid busy-spinning 

• Search/replace __disable() / __enable() with GetSpinlock() / 

ReleaseSpinnLock() is a very bad idea 

• consider following the LET (“Logical Execution Time”) concept 
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Overload situation the PL was not even aware of 
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Performance 

optimization 
Code level 



Code level optimization approaches 

• Move frequently addressed symbols (code, data) to fast memory 

• Use (and cross-check!) dedicated compiler optimizations 

• Manual optimization 

– Inline functions 

– Alignment 

• Aligned data allows faster code 

• Code aligned to cache-lines can increase speed 

– Exploit specialized machine code 

• Example: saturation instruction avoids efficient wrap-around protection 
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In the following we will look at the optimization of the 

well-known memcpy function copying 1024 bytes. 



memcpy 
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/*------------------------- The ‘standard’ memcpy routine ---------------------------- 

*  Parameters: 

*     *pDest - The destination to which data is copied across to 

*     *pSrc  - The source of the data to be copied across. The addresses of 

*              pSrc and pDest are passed as arguments. This avoids having 

*              to pass the complete arrays in as arguments in order to 

*              do manipulations. Note, they are void pointers to allow any type 

*              of array to be passed. 

*      nBytes - The number of bytes to copy from pSrc to pDest 

*               Remember that a 'char' is 1 byte and an 'int' is 4 bytes (or a word) 

*-----------------------------------------------------------------------------------*/ 

void *memcpy_( void *pDest, void const *pSrc, unsigned short nBytes ) 

{ 

   /* Assign pSrc and pDest to 'char' Auto-variable pointers on the stack. This 

      allows byte per byte transfer */ 

    char *pD = pDest; 

    char const *pS = pSrc; 

 

   /* Iterate through the number of bytes to copy across, decrementing nBytes 

      until it reaches zero */ 

    while( nBytes-- ) 

    { 

     /* Copy one byte from the source to the destination and then  

    increment the index */ 

 *pD++ = *pS++; /* E.g. pD[i++] = pS[i++]; */ 

    } 

    return pDest; 

} 



Step 0: non optimized version (starting point) 

 

 

 

 

 

 

Assembly code 
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80006e6e <memcpy_>: 

80006e6e: 40 42            mov.aa %a2,%a4 

80006e70: a0 0f            mov.a %a15,0 

80006e72: 01 f2 10 40      add.a %a4,%a2,%a15 

80006e76: 01 f5 10 30      add.a %a3,%a5,%a15 

80006e7a: 9f 04 03 80      jned %d4,0,80006e80 <memcpy_+0x12>  

80006e7e: 00 90            ret  

80006e80: 79 3f 00 00      ld.b %d15,[%a3]0 

80006e84: 2c 40            st.b [%a4]0,%d15 

80006e86: b0 1f            add.a %a15,1 

80006e88: 3c f5            j 80006e72 <memcpy_+0x4> 

Default Memory Locations CET to Copy 1024 Bytes CET to Copy 1 Byte 

Function Code pDest pSrc nBytes MAX MIN MAX MIN 

Cached Flash0 LMU RAM Cached Flash0 LMU RAM 121us 030ns 114us 395ns 118,2ns 111,7ns 

CET per Byte 

• No post-increment 

addressing 

• No Loop instruction 



Memory read access times: AURIX™ manual 

On Chip Bus Access Times 

The table describes the CPU 

access times in CPU clock cycles 

for the TC27x. The access times 

are described as maximum CPU 

stall cycles where e.g. a data 

access to the local DSPR results in 

zero stall cycles. Pls. note that the 

CPU does not always immediately 

stall after the start of a data read 

from another SPR due to 

instruction pipelining effects. This 

means that the average number 

will be below the here shown 

numbers. 



data read access DSPR = data scratch pad RAM DMI = data memory interface 

program read access PSPR = program scratch pad RAM PMI = programmemory interface 

AURIX™ memory read access times: interpretation 

Core Core DSPR PSPR 

Crossbar 

D
F

L
A

S
H

 

P
e

ri
p

h
e

ra
l 

System peripheral bus 

P
F

L
A

S
H

 

DSPR PSPR 

DMI PMI DMI PMI 

0 
4..7 
5 
5 
5+WS 

5 
5+WS 

5 
0 

Maximum CPU stall cycles for data reads 

Maximum CPU stall cycles for program reads 

“Maximum” refers to a situation 

where there are no memory access 

conflicts. If these occur, the penalty 

can be much higher! 



Step 1: Use different memory locations 

Code/Data Memory Locations 
CET per byte for 

1024 bytes 

Function Code pDest pSrc 

Cached Flash0 

LMU RAM Cached Flash 111.7ns 

LMU RAM LMU RAM 125.0ns 

Local DSPR0 Local DSPR0 100.6ns 

Local PSPR0 

LMU RAM Cached Flash 106.4ns 

LMU RAM LMU RAM 135.8ns 

Local DSPR0 Local DSPR0 100.6ns 

Un-Cached Flash0 Local DSPR0 Local DSPR0 205.1ns 

PSPR1 Local DSPR0 Local DSPR0 149.4ns 
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Baseline  

Fastest  

Slowest  



Step 2: compiler optimizations 

• Tasking 

– Function Specific Option Pragmas 

• #pragma optimize ‘o’, where o stands for option  

• #pragma endoptimize. To confine the optimization option 

 

– Desirable: 

1. Use post-incrementing load and store operations 

2. Use Loop instruction 

3. Use loop unrolling 

 

• These compiler optimizations are only a subset of what was actually 

analyzed 

34 



Step 2: compiler optimizations (results) 

• Use post-incrementing load and store operations 

• Use Loop instruction 

• Tasking can achieve both at the same time using a compiler 

environment option –t0, which means to optimize for speed  

• Assembly: 
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8020011c 40 4f               memcpy_:  mov.aa      a15,a4 

8020011e 8e 46                         jlez        d4,0x8020012a 

80200120 60 42                         mov.a       a2,d4 

80200122 b0 f2                         add.a       a2,#-0x1 

80200124 04 5f                         ld.bu       d15,[a5+]0x1 

80200126 24 ff                         st.b        [a15+]0x1,d15 

80200128 fc 2e                         loop        a2,0x80200124 

8020012a 40 42                         mov.aa      a2,a4 

8020012c 00 90                         ret 

CET per Byte for 1024 

Compiler Description MAX MIN 

Tasking 
Enabling post-increment load and store operations 

and Loop instruction 
65.4ns 59.6ns 



Step 3: manual optimizations 

• Checking Data Alignment 

– If aligned, we can copy across words each time using word size 

instructions.  
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    /* Divide nBytes by 4. This is to get rid of EXTR.U operation and to get word decrements. 

      E.g. 16 bytes is 4 words.. */ 

    GTF_uint32_t wordCount = nBytes >> 2u;  

 

    /* Check for word alignment. Casting is needed for bitwise manipulation */ 

    if( 0u == ( ( (GTF_uint32_t)pDest | (GTF_uint32_t)pSrc | nBytes ) & 3u ) ) 

    { 

        /* Assign Word Pointers */ 

        GTF_uint32_t *pD = (GTF_uint32_t *)pDest; 

        GTF_uint32_t const *pS = (GTF_uint32_t const *)pSrc; 

 

        while( 0u != wordCount-- ) 

        { 

            *pD++ = *pS++; /* Copy words (4 bytes at a time..not 1 byte) across */ 

        } 

    } 

    /* Else do Manual Loop Unrolling with Switch Case Above */ 

    else 

    { 

        .... 



Step 3: manual optimizations (results) 
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CET per byte 

for 1024 bytes 

Compiler Description 

Other (not 

TASKING) 

Manual Loop Unrolling Depth 

Of 4 Switch Case below 
65.4ns 

Manual Loop Unrolling Depth 

of 4 Switch Case above 
63.5ns 

Manual Loop Unrolling Depth 

of 4 Switch Case above and 

Removing EXTR.U operation 

63.5ns 

Duff’s Device 71.3ns 

Copying Words across. Union declared  

outside the function 
18.6ns 

TASKING 

Manual Loop Unrolling Depth 

Of 4 Switch Case below 
58.6ns 

Manual Loop Unrolling Depth 

of 4 Switch Case above 
59.6ns 

Manual Loop Unrolling Depth 

of 4 Switch Case above and 

Removing EXTR.U operation 

55.8ns 

Duff’s Device 57.6ns 

Copying Words across. Union declared  

outside the function 
14.7ns 

Good result!  

Best result!  



Spinlocks 
and how not to use them 



Spinlocks – Overview 

• GetSpinlock obtains a spinlock when no other core is using it. If 

another core is using it then GetSpinlock loops (spins) until the 

spinlock can be correctly obtained. 

 

• TryToGetSpinlock is a non-blocking version of GetSpinlock. It 

always returns immediately with no spinning. 

 

• ReleaseSpinlock releases a spinlock. Obtained spinlocks must be 

released in the correct order, the last obtained spinlock must be 

released first. 

StatusType GetSpinlock      ( SpinlockIdType SpinlockId     ); 

StatusType TryToGetSpinlock ( SpinlockIdType SpinlockId, 

                              TryToGetSpinlockType* Success ); 

StatusType  ReleaseSpinlock ( SpinlockIdType SpinlockId     ); 



Spinlocks – problematic straight forward usage 

Imagine a situation where a Task gets interrupted by an ISR while holding a 

spinlock. Although not related at all to the spinlock, the ISR can now delay 

TASKs on other cores waiting (i.e. spinning) for the spinlock. 

GetSpinlock(spinlock); 

... /* do what you need to do with spinlock obtained */ 

ReleaseSpinlock(spinlock); 

prio 

t 

TASK 

ISR 

prio 

t 

TASK 

Core 0 

Core 1 



Spinlocks – pseudo clever usage 

To overcome the problem, we could disable/enable interrupts. However, this might lead 

to a considerable delay of the ISR caused by TASKs on other cores. 

DisableOSInterrupts( ); 

GetSpinlock(spinlock); 

... /* do what you need to do with spinlock obtained */ 

ReleaseSpinlock(spinlock); 

EnableOSInterrupts( ); 

 

prio 

t 

TASK 

ISR 

prio 

t 

TASK 

Core 0 

Core 1 



Spinlocks – TryToGetSpinlock: best practice 

• Are we there yet? Is this the best implementation? 

• Actually no. 

• The best spinlock is the one you do not need! 

TryToGetSpinlockType success; 

DisableOSInterrupts( ); 

(void)TryToGetSpinlock( spinlock, &success ); 

while( TRYTOGETSPINLOCK_NOSUCCESS == success ) 

{ 

    EnableOSInterrupts( ); 

    /* Allow preemption. */ 

    DisableOSInterrupts( ); 

   (void)TryToGetSpinlock( spinlock, &success ); 

} 

/* Region with spinlock obtained and interrupts disabled. */ 

... /* do what you need to do with spinlock obtained */ 

ReleaseSpinlock( ); 

EnableOSInterrupts( ); 



The Multi-core Poster – Multi-core on one sheet of paper 



Conclusion 
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Tracing: End-to-end model-check 

• On its way from the mind to the microcontroller, an idea 

can suffer from transition-errors. 

• Tracing allows an end-to-end model-check. 

Mind Binary Microcontroller Model C-Code 

   End-to-end                                 model-check 

Tracing 



Conclusion 

• Performance optimization is complex 

– there is no “press this button to get the perfect software” solution 

 

• However, tools can significantly reduce the effort 

– In the early phase, in the integration phase, in the late phase 

– On RTOS level, on code level 

 

• Understand your system before starting optimizing 

– Find the critical hot-spots 
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Thank you 


