Timing Requirements and Timing Verification

A suggestion based on experience

Peter Gliwa

TIT

Contents

- Introduction, motivation
- Basics of Timing Analysis
- Timing requirements, Timing methodology
- Summary

GLIWA

Why care about timing?

- No **safe** and **highly available** embedded software without rock-solid timing.
- If you don't *properly* care about timing, it will get you in the dark (= late in the project).
- Optimized timing can save \$\$\$ (cf. "*Timing analysis saves OEM €12m"* in my book)

What is this?

The V-model as we know it

6

It is applicable to timing as well!

Timing parameters

Abr.	Explanation (EN)	Erklärung (DE)
IPT	initial pending time	Initialwartezeit
CET	core execution time	Nettolaufzeit
GET	gross execution time	Bruttolaufzeit
RT	response time	Antwortzeit
DT	delta time	Deltazeit
PER	period	Periode
ST	slack time	Restzeit
PRE	preemption	Unterbrechungszeit
JIT	jitter	Jitter
CPU	cpu load	CPU Auslastung
DL	Deadline	Deadline
NST	Net slack time	Nettorestzeit

9

Analysis Techniques: Summary

- Static Code Analysis
 - How? Analyze binary
 - What? Provide WCET
- Code Simulation
 - How? Simulate processor, execute target machine code
 - What? Run target code on x86
- Measurement
 - How? Instrument SW (T1.cont)
 - What? Get timing parameters, supervise SW

- SW-based Tracing
 - How? Instrument SW (T1.scope)
 - What? Get scheduling traces, see 'the real thing'
- Scheduling simulation
 - How? Simulate OS
 - What? Explore scheduling on x86
- Static Scheduling Analysis
 - How? Mathematical approach
 - What? Provide WCRT

Overview Analysis Techniques

GLIWA recommendation

• Step 1

Collect timing requirements through interviews

• Step 2

Initial timing design using scheduling simulation, create timing budgets

• Step 3

Monitor budgets through timing measurements (e.g. T1.cont) Monitor scheduling through tracing (e.g. T1.scope, T1.steaming)

• Step 4

Optimize timing (see chapter "Timing optimization" of my book)

• Step 5

Verify timing through **automated (!)** timing tests

Step 1: Collecting timing requirements

- Interviews with
 - Functional developers
 - Integrators
 - BSW experts
 - Experts from previous generation of ECU (if any)

Questionnaire regarding timing requirements	Which timing parameter is relevant?
	Please mark with a cross:
Date: Project name/ID: Filled out by (name): Brief description of the timing requirement:	 CET (Core Execution Time) DT (Delta Time) RT (Response Time) GET (Gross Execution Time) ST (Slack Time) NST (Net Slack Time) IPT (Initial Pending Time) JIT (Jitter) PRE (Preemption Time) Execution order (e.g. related to runnables) Data age (time between read and write or between send and receive/usage of the received data) Boot/init: from to
	□ Other:
What is the requirement related to?	
Description:	What type of value is it?
Please mark with a cross:	Please mark with a cross:
Code/functionality Physical level Model level Software component Runnable	 Minimal allowed value Maximal allowed value Average value Not applicable Other:
C Function Code level Other: Data Other: Other:	What is the value (e.g. in μs or ms)? Limit or required value: or
	Execution order:

GLIWA

Step 2a: Initial design using scheduling simulation

- Configure operating systems on all cores
 - Create TASKs
 - Create ISRs
 - Optionally create and assign runnables
- Configure activation patterns
 - When/how are ISRs triggered and TASKs activated?
- Provide BCETs and WCETs to be used in simulation
 - Budgets
 - Measurements from previous generations of the SW

Step 2b: Initial design using scheduling simulation

- Explore the scheduling
 - Get to know the timing of your ECU early!
 - Optimize
 - Compare different concepts

- Find a solid scheduling
 - The WCETs used in the simulation for TASKs, ISRs and runnables can then function as timing requirements. In other words: if these are not exceeded, the scheduling, the timing is safe.

Step 3: Look at the real world

- Do not rely on model based timing analysis or scheduling simulation only!
- Models and simulations are NOT the reality! In the end you build real products, not virtual products.

Step 4: Optimize timing (top down)

Scheduling level

Memory usage

Code level

Step 5: Verify timing

- Verify timing against requirements
 - E.g. timing parameters CET, RT, DT, CPU-load using measurement
 - scheduling using tracing
- Use automated (!) timing tests for all of this!
- Verify
 - In the lab
 - On the HIL
 - In the final environment (the machine, the car, etc.)
- Optionally supervise timing in final product (T1 is **ISO 26262 ASIL D** certified)

ZERTIFIKAT NR:	NO FS/71/220/16/01	72 PAGE 1/1 SEITEINO	
LICENCE HOLDER	MANUFACT		
GLIWA GMBH POLLINGER STR. 1 82362 WEILHEIM I.OB. GERMANY	GLIWA GME POLLINGEF 82362 WEIL GERMANY	BH 8 STR. 1 HEIM I.OB.	
PROJECT NO/-ID	LICENSED TEST MARK	CERT. REPORT NO. ZERTIFIKATSBERICHT NR.	
K0B9-AU05	SGS TUNK SAAR SAAR SAAR	K0B90004	
Tested according to	ISO 26262:2011		
Certified product(s) Zertificierm(ii) Produkt(e)	T1-TARGET-SW variant 57: Infineon TC1.6.X core with TA T1-TARGET-SW variant 15: Infineon TC1.6.X core with Hij T1-TARGET-SW variant 44: Freescale e20024, e20027 co	SKING compiler ghTec GCC compiler re with HighTec GCC compiler	
Model(s)	Version V2.2.5.0		
Technical Data and Parameter Technische Daten und Parameter	T1-TARGET-SW with the listed component acc. to ISO 26262-8 usable as part of safety related s ISO 26262 up to ASIL D	variants is a qualified SW 2011, clause 12 and software acc. to:	
Specific Requirements Specifiche Anlordenungen	Any changes to the design, cor require repetition of some parts or retain the certification. The certificate report is an integral p The safety related application guid the Safety Manual) shall be maintain	nponents or processing may of the qualification in order to ant of this certificate. elines (refer to K0B90004 and red.	
Certification Bo for Functional Si SGS-TÜV Saar G Zertizerungstelle für Funktiona	afoty Munich, 06.42 mbH G. UCC Gudrun Neum	2.2016 Kan Gan	
Die Prüf- und Zertifizierordnung ist integri SGS-TÜV Saar GmbH, Hofmannstrafie	aler Bestancteil des Zertifikates. 50. 81379 München, Germany		
	in erri i kannen, errinany		

Summary

- A suitable timing methodology is important.
- Define sensible requirements More is not naturally better. Example: OEM specified WCET requirements which lead to poorer quality
 - ASIL-D project adds a degradation concept (and thus more complexity) just to fulfill WCET requirements.
 - Addressing too many timing aspects binds resources and moves the focus away from real timing issues.
- Do not forget the *real* world in the end you are building *real* embedded systems.

