
Timing Requirements and 
Timing Verification

Peter Gliwa

A suggestion based on experience



Contents

• Introduction, motivation

• Basics of Timing Analysis

• Timing requirements, Timing methodology

• Summary

2



Motivation

3



Why care about timing?

• No safe and highly available embedded 
software without rock-solid timing.

• If you don’t properly care about timing, it will 
get you in the dark (= late in the project).

• Optimized timing can save $$$
(cf. “Timing analysis saves OEM €12m” in my book)

4



What is this?

5



The V-model as we know it

6



It is applicable to timing as well!

7



Basics of Timing Analysis

8



Timing parameters

9

Abr. Explanation (EN) Erklärung (DE)

IPT initial pending time Initialwartezeit

CET
core execution 

time
Nettolaufzeit

GET
gross execution 

time
Bruttolaufzeit

RT response time Antwortzeit

DT delta time Deltazeit

PER period Periode

ST slack time Restzeit

PRE preemption Unterbrechungszeit

JIT jitter Jitter

CPU cpu load CPU Auslastung

DL Deadline Deadline

NST Net slack time Nettorestzeit



Analysis Techniques: Summary

• Static Code Analysis
• How? Analyze binary

• What? Provide WCET

• Code Simulation
• How? Simulate processor, 

execute target machine code

• What? Run target code on x86

• Measurement
• How? Instrument SW (T1.cont)

• What? Get timing parameters, 
supervise SW

• SW-based Tracing
• How? Instrument SW (T1.scope)

• What? Get scheduling traces, see 
‘the real thing’

• Scheduling simulation
• How? Simulate OS

• What? Explore scheduling on x86

• Static Scheduling Analysis
• How? Mathematical approach

• What? Provide WCRT

10



Overview Analysis Techniques

11



Timing requirements
Timing methodology

12



GLIWA recommendation

• Step 1

Collect timing requirements through interviews

• Step 2

Initial timing design using scheduling simulation, create timing budgets

• Step 3

Monitor budgets through timing measurements (e.g. T1.cont)

Monitor scheduling through tracing (e.g. T1.scope, T1.steaming)

• Step 4

Optimize timing (see chapter “Timing optimization” of my book)

• Step 5

Verify timing through automated (!) timing tests

13



Step 1: Collecting timing requirements

• Interviews with

• Functional developers

• Integrators

• BSW experts

• Experts from previous 
generation of ECU (if any)

14



Step 2a: Initial design using scheduling simulation

• Configure operating systems on all cores
• Create TASKs

• Create ISRs

• Optionally create and assign runnables

• Configure activation patterns
• When/how are ISRs triggered and TASKs activated?

• Provide BCETs and WCETs to be used in simulation
• Budgets

• Measurements from previous generations of the SW

15



Step 2b: Initial design using scheduling simulation

• Explore the scheduling
• Get to know the timing of your ECU early!

• Optimize

• Compare different concepts

• Find a solid scheduling
• The WCETs used in the simulation for TASKs, ISRs and runnables can then 

function as timing requirements. In other words: if these are not exceeded, 
the scheduling, the timing is safe.

16



Step 3: Look at the real world

• Do not rely on model based timing analysis 
or scheduling simulation only!

• Models and simulations are NOT the reality!
In the end you build real products, not 
virtual products.

17



Step 4: Optimize timing (top down)

• Scheduling level

• Memory usage

• Code level

18



Step 5: Verify timing

• Verify timing against requirements

• E.g. timing parameters CET, RT, DT, CPU-load using measurement

• scheduling using tracing

• Use automated (!) timing tests for all of this!

• Verify

• In the lab

• On the HIL

• In the final environment (the machine, the car, etc.)

• Optionally supervise timing in final product (T1 is ISO 26262 ASIL D certified)

19



Summary

20



Summary

• A suitable timing methodology is important.

• Define sensible requirements
More is not naturally better. Example: OEM specified 
WCET requirements which lead to poorer quality

• ASIL-D project adds a degradation concept (and thus more 
complexity) just to fulfill WCET requirements.

• Addressing too many timing aspects binds resources and 
moves the focus away from real timing issues.

• Do not forget the real world – in the end you are 
building real embedded systems.

21

So
u

rc
e:

 B
SE

-G
al

er
ie



Thank you

22


