
T IMING 1. CLASS
T1 – state of the art timing suite

G L I W A
e m b e d d e d s y s t e m s

w ww. g l iw a . c om
GLIWA GmbH embedded systems | Winterstr. 9a | D-82362 Weilheim

Multi-core processors have been used for decades in domains
other than automotive. Every PC and every smartphone
comes with at least a dual-core processor. The main reason
for using more than one
core within the processor is
the ever increasing need for
more computation power. [1]
Moore’s law – stated 1965
– says: “The number of tran-
sistors in a dense integrated
circuit doubles approximately
every two years.”

AUTOSAR originally was designed for single-core
processors but has been extended with a number of
multi-core features.
 • Starting and shutting down other cores

 revewoh(gniniahc ksat dna noitavitca ksat eroc-ssorC •
task-migration is not supported and also not expected)

 • Spinlocks (“cross-core semaphore”, explained later)
 • IOC (Inter-OS-Application Communicator)

The term “parallelism” refers to two or more fragments of a
program being executed at the same time on several cores.
Parallelism can take place at different levels.

6 .1 A PP L I C AT I O N PA R A L L E L I S M
Each application runs on one core only. One core can still
handle more than one application though. The applications
come with low cohesion i.e. they are largely independent.

Example 1: To reduce costs, two single-core ECUs are merged
into one dual-core (= multi-core) ECU. With application
parallelism, the software of each single-core ECU gets its
own dedicated core on the multi-core ECU.

Example 2: AUTOSAR concept [7]. Each core
comes with its own set of TASKs and ISRs i.e. its
own AUTOSAR application.
The AUTOSAR OS allows e.g. cross-core TASK
activations and inter-core communication
through the IOC (Inter-OS-Application Commu-
nicator). It explicitly requires data to be copied
and thus might be ineffi cient for large data.
Communication through the RTE can be opti-
mized (e.g. direct accesses instead of working on
copies) as long as it is intra-core communication.

Example 3: When migrating a single-core appli-
cation to multi-core, one sensible approach is to
have “AUTOSAR cores” and “non-AUTOSAR
cores”. This approach is used with early
AUTOSAR standards that do not support multi-
core. The AUTOSAR software communicates
with the non-AUTOSAR software via complex
device drivers (CDD). A non-AUTOSAR core
could, for example, handle time-critical and/or
very frequent interrupts, reducing the number of
cache misses and pipeline stalls. There is no need
for complicated function parallelism.

6 .2 F U N C T IO N PA R A L L E L I S M
Function parallelism executes closely related fragments (with
potentially high cohesion) of an application in parallel. In or-
der to fi nd/design suitable fragments, dependencies have to
be analyzed/specifi ed
 • DFA (data-fl ow-analysis)
 • Execution order constraints

Function parallelism is largely absent in Windows/Linux/Mac
software, mobile devices etc. These use application
parallelism mainly! There are very few examples of successful
function parallelism and these include 3D rendering software,
mainframe database software, computationally intensive sci-
entifi c software at research institutes and universities, etc.

Fragmenting software so that it supports function
parallelism is not easy and, when done poorly, can
result in massive use of protection mechanisms like
spinlocks, with a negative impact on the overall
performance. As Amdahl’s law shows, the benefi t
does not scale with the number of cores!

Good reasons for more computing power include:
-issime-orez(serutaef elcihev decnavda erom dna eroM •

on, autonomous driving, car-to-X communication, etc.)
 yromem ,gnitupmoc esrevid(stnemeriuqer ytefas retcirtS •

protection, on-target supervision, etc.)
 stimil edoc detareneg dna sdradnats fo esu gnisaercnI •

the scope of optimization
Building faster (higher clock-speed f) single-core processors
becomes too expensive at some point due to the following
reasons.
 • Power consumption: P ~ f³ (limiting-case)
 • EMC (Electromagnetic compatibility) problems
 • Power dissipation “Melting dashboard”

AUTOSAR does not (yet) support
 yrassecennu(seroc ssorca noitazimitpo ETR RASOTUA •

resource locks can be optimized away on a single-core
system but unnecessary spinlocks cannot be optimized
away on multi-core systems)

 gniypoc yltnerruc(ecnerefer yb gnissap-atad eroc-retnI •
data is mandatory which becomes an issue when dealing
with large data)

6 . 3 I N ST RU C T I O N PA RA LLEL I SM
Processor cores have pipelines which process typically 4 to
7 instructions in parallel. However, just because you have a
pipeline does not mean you exploit instruction parallelism,
which relies on being able to fetch enough instructions to fi ll
the pipeline.
The following techniques can reduce fl ow changes that stall
the pipeline and so they support effi cient instruction paralle-
lism:

gninilni erehw sorcam tsael ta esu(sllac noitcnuf enilni •
is not possible)

 • fewer interrupts (use polling where applicable)
yb demrofrep noitazimitpo(gniredroer noitcurtsni •

the compiler)

Amdahl’s law:
“The speedup of a
program using multiple
processors in parallel
computing is limited by
the time needed for the
sequential fraction of the
program.” [2]
In other words:
It takes a woman nine
month to carry a child to
term. Nine women are
not going to do it in a
month.

Amdahl‘s law applies when there is a signifi cant portion of
code which cannot be parallelized.

Gustafson’s law:
“Programmers tend to
set the size of problems
to use the available
equipment to solve pro-
blems within a practical
fi xed time. Therefore,
if faster (more parallel)
equipment is available,
larger problems can
be solved in the same
time.” [3]

Gustafson’s law applies when a given problem can be repla-
ced by a bigger problem solving the old problem plus other
problems.

Heterogeneous multi-core processors have different cores of
different types.
Examples:
 • Infi neon TC1797 (TC1.3.1 and PCP)
 • Freescale MPC5xx with TPU
 • Freescale S12X with XGATE
 • Infi neon TC277 (several different cores, see next section)

Homogeneous multi-core processors have a number
of cores of the same type.
Examples:
 • Freescale MPC5xxx
 • Infi neon TC277 (two TC1.6P cores, see next section)

Lock-step multi-core processors execute the same single-
core software on two separate cores at the same time, for
safety reasons. The results of the two cores get continuously
compared by the hardware. When a mismatch (=error)
occurs, the processor can switch to a safe state.
Chip designers spend a lot of effort to avoid common mode
failures: slight execution delay between the cores, separate
clock-trees, rotated and fl ipped 2nd CPU, potential guard
ring around each CPU, etc. [4]
Example: Texas Instruments TMS570, Infi neon AURIX™
(TC1.6.1 core with checker core, see next section)

Amdahl’s law and Gustafson’s law seem to contradict.
Which one applies to automotive projects?

 fo srosseccus yltsom era stcejorp eroc-itlum evitomotuA •
existing single-core projects.

 erahs taerg a htiw emoc yllacipyt stcejorp eroc-elgniS -
of sequential code.

 - Thus, Amdahl’s law is more appropriate.

 tes den fied a htiw emoc stcejorp eroc-itlum evitomotuA •
of features.

 ew :sdrow rehto nI .ezis dex fi a sah ”melborp“ ehT -
are not going to add just any code in order to increase
the throughput of the cores.

 - Thus, Gustafson’s law does not apply.

-> Amdahl’s law matches the automotive situation better,
limiting the speed increase that we can realistically expect
with multi-core processors.

IN T RO D U C T I O N

M U LT I - C O RE TH EO RY

M U LT I - C O RE H A RD WA RE A R C H ITEC TU R ES

01

03

04

A fable of parallel processing:
 yad eno ni tliub nehctik a evah ot tnaw uoy enigamI •

(~ 8 hours).
 ekat lliw tI“ :syas eh tub ti od ot namstfarc a ksa uoY •

me 16 hours.”
 a erih thgim uoy oS • second one in order to get the job

done in time.
 smeti cirtcele eht stcennoc namstfarc eno elihw :TUB •

(and therefore takes the fuses out), the other one can-
not use his power tools and is blocked.

 • They also spend a lot of the time talking to each other.
 dna)tuo desserts yletelpmoc(sruoh 11 retfa hsin fi yehT •

you agree to plan next time.
This poster sheds a light on automotive multi-core embedded
software timing aspects. Proper multi-core know-how helps
to avoid software projects running into situations as descri-
bed above.

 :seroc gnissecorp niam eerhT •
two homogeneous ()

 dna seroc ”ecnamrofrep“ P6.1
one 1.6E “effi ciency” core.
Since all three share the same
instruction set, you could also
regard them as three homoge-
neous TC1.6.1 cores.

 na evah seroc 1.6.1CT owT •
additional lock-step ()
core.

 rehto lareves era erehT •
heterogeneous ()
cores.

Each TriCore has local program memory and local data
memory that it can access with no delay. With signifi cant
delay (up to 5 CPU stall cycles), each TriCore can also access
data/program memory of other cores, see also section
“09 Cloning”.

Accesses to peripherals “cost” up to 4 or 7 CPU stall cycles
depending on the peripheral bus confi guration.

The shared program fl ash and the
shared data fl ash cause a maximum
of (5 + number of wait-states) CPU
stall cycles [6]. These numbers show
that location of data and code has a
signifi cant impact on the timing.

20

10

0
8 64 512 4096

S
P
E
E
D
U
P

NUMBER OF CORES

Parallel Portion

100

50

0
20 40 60 80 100

S
P
E
E
D
U
P

NUMBER OF CORES

Parallel Portion

E XA M P L E IN F IN E O N TC 27 X “A U R I X™ ” [5]
05

W H Y M U LT I - C O RE ?

W H Y D O E S M U LT I - C O RE S E E M T O BE S O D I FF I C U LT ?

A U T O S A R A N D M U LT I - C O RE

D IF F ER E N T K IN D S O F PA R A L L E L I SM

02

10

07

06

32 bitLOCK
STEP

LOCK
STEP

32 bit 32 bit

32 bit

32 bit

8 bit

Homogeneous

Checker
Core

Checker
Core

Standby
controller

Generic Timer
Module (GTM)

TriCore
1.6 P

performance

TriCore
1.6 E

effi ciency

TriCore
1.6 P

performance

Hardware
Security

Module (HSM)

SC

SC

C0 C1

Core 0 Core 1

BSW CDDOS

RTE

AUTOSAR
application non

AUTOSAR
application

Core 0 Core 1

cross-core
task activation etc.

BSW BSWOS OS

RTE

AUTOSAR
application

AUTOSAR
application

optimization
possible

optimization
possible

GLIWA GmbH is an AUTOSAR development member

Whilst a single-core application can use interrupt locking to
ensure data-consistency, this is not suffi cient for multi-core
systems sharing data between cores. A command “disable
all interrupts” only affects the core executing the command.
AUTOSAR introduces spinlocks for synchronization in multi-
core systems.
Example: assume an application has two, frequent interrupts
and it needs to know the total
number of executions of both
interrupts.

The spinlock related AUTOSAR services are:

 skcolnips deniatbO .kcolnips a sesaeler kcolnipSesaeleR •
must be released in the correct order, the last obtained
spinlock must be released fi rst.

 si eroc rehto on nehw kcolnips a sniatbo kcolnipSteG •
using it. If another core is using it then GetSpinlock
loops (spins) until the spinlock can be correctly obtained.

-nipSteG fo noisrev gnikcolb-non a si kcolnipSteGoTyrT •
lock. It always returns immediately with no spinning.

Without any protection,
data-consistency cannot be guaranteed.

The straight-forward implementation shown in Example (b) is
rarely suitable for real applications and can cause signifi cant,
unintended delays when one core occupies a spinlock and
then handles one or more interrupts. A better implementa-
tion is shown below and can be used as a design pattern for
spinlock-usage.

D ATA - C O N S IS TE N C Y, SP IN L O C KS08

ISR (myISR<x>)
{
 DisableAllInterrupts();
 counter++;
 EnableAllInterrupts();
}

ISR (myISR<x>)
{
 GetSpinlock(spinlock);
 counter++;
 ReleaseSpinlock(spinlock);
}

10

10

11

11

myISR1

t

myISR2

Shared
memory

++

++

teg stpurretni htoB)a
executed on a single core.

teg stpurretni htoB)b
executed on different cores.

StatusType ReleaseSpinlock (SpinlockIdType SpinlockId);
StatusType GetSpinlock (SpinlockIdType SpinlockId);
StatusType TryToGetSpinlock (SpinlockIdType SpinlockId,
 TryToGetSpinlockType* Success);

TryToGetSpinlockType success;
DisableOSInterrupts();
(void)TryToGetSpinlock(spinlock, &success);
while(TRYTOGETSPINLOCK_NOSUCCESS == success)
{
 EnableOSInterrupts();
 /* Allow preemption. Optionally insert delays to reduce
 the number of memory confl icts caused by TryToGetSpinlock. */
 DisableOSInterrupts();
 (void)TryToGetSpinlock(spinlock, &success);
}
/* Region with spinlock obtained and interrupts disabled. */
... /* do what you need to do with spinlock obtained */
ReleaseSpinlock();
EnableOSInterrupts();

Cloning is a very powerful concept. On the one hand it al-
lows unmodifi ed, single-core software to execute correctly
on different cores at the same time. On the other hand, it
provides an easy way to create effi cient, dedicated, multi-
core software guaranteed safe from certain kinds of data
access confl ict.

With cloning, all cores see their own, local memory at the
same start address, e.g. 0xD0000000 for the DSPR (data
scratch pad RAM) of the AURIX™ TriCores. These memories
have the same addresses (overlaying) but can have different
contents and are, in some sense, clones. Any load or store
instruction using this address range accesses the memory lo-
cal to the core on which the instruction executes.

Existing, single-core software with internal data can be exe-
cuted simultaneously by each core as each core uses its own
copy of internal data. No modifi cation of the code is requi-
red, we simply locate the internal data in the cloned address
range. Processors not supporting cloning have to allocate an
array rather than a single variable and, at run-time, have to
get the core identifi er and access the corresponding array
element, if they running the same code on different cores.

The AURIX™ additionally maps each DSPR address onto the
linear shared address-space (mirroring) so that each core can
also access the DSPR of other cores, although memory pro-
tection may be used to limit cross-core accesses.

C L O N I N G09

Multi-core is the standard in many other domains and the
parallel paradigm is rather old, very well understood and not
really complicated. So how can it be that so many automoti-
ve projects seem to struggle with multi-core?

Other domains mostly use application parallelism and in
most cases, the software has always been organized in
threads. Such applications can easily be ported from single-
core to multi-core because parallelism has been made explicit
in the threading architecture and the multi-core complexity
can be devolved to the OS.

The application is not even aware of the number of cores it
runs on and there is no attempt to guarantee improved per-
formance on a multi-core processor.

Automotive engineers additionally want function parallelism,
even if they are not aware of this and the resulting impact.
Their “old”, single-core application is not designed for multi-
core and their code generators do not indicate any inherent
parallelism in the code.

[1] Dr. Karsten Schmidt, Rolf Schneider, André Kohn, Sven
Schönberg et al.: Effi cient Virtualization for Functional In-
tegration on Modern Microcontrollers in Safety-Relevant
Domains, SAE 2014, Detroit, Jan. ‚14

[2] WIKIPEDIA: en.wikipedia.org/wiki/Moore%27s_law
[3] WIKIPEDIA: en.wikipedia.org/wiki/Gustafson%27s_law
[4] :stnemurtsnI saxeT Overview for Hercules TMS570

MCUs; www.ti.com

[5] nailuJ ,hcsinraH sneJ ,awilG reteP ,rezbueD leahciM .rD
Kienberger, Stefan Schmidhuber: Multicore Engineering
Tools and Methods, ESE Congress, Sindelfi ngen, Dec.‘14

[6] :seigolonhceT noen finI AURIX™ TC27xT data sheet:
www.infi neon.com

[7] :ylsuoiverp(noitubirtsiD WSB ot ediuG :RASOTUA
Guide to Multi-Core Systems); www.autosar.org

Multi-core EMBEDDED
SOFTWARE
TIMING

AN INTRODUCTION
TO AUTOMOTIVE

The golden rules for creating simple, easy-to-
develop and effi cient multi-core software are:

seroc ot atad dna edoc etacolla yllacitatS •
so that you can analyze and optimize that
allocation

 eziminim ot eroc eno no atad dna edoc ezilacoL •
cross-core accesses

 ot etairporppa erehw edoc dna atad etacilpuD -
achieve this goal

 • De-couple code on different cores
-ipyt(atad dessecca yllacimota taht rebmemeR -

cally up to 64 bits) can be accessed by one wri-
ter and ‘n’ readers with no synchronization

 • Schedule
 gnizinorhcnys yb stci flnoc fo rebmun eht ecudeR -

the schedule across all (related) cores and using
offsets so that tasks that access shared data run
at mutually exclusive, or at least different, times

 dnatsrednu ,elbadiovanu si noitazinorhcnys erehW •
the relevant mechanisms

 - Spinlocks for very short delays
 - Spinlock with delay for longer delay

detcepxe era syaled regnol neve nehw hctiws ksaT -

As of today (2015) neither the AUTOSAR standard nor
the code-generators exploit the multi-core potential to a
high degree. The fi rst and most important step towards
successful multi-core projects is a sound understanding
of multi-core aspects. With this, developers will learn
two things:
There is no “silver bullet” that allows legacy designs to
suddenly exploit parallel processing.
Exploiting the great potential of multi-core performance
requires parallelism to be designed in from the ground
up and support from a range of tools to predict and vali-
date timing effects.With proper understanding of multi-
core aspects and the right tools, it is possible and very
worthwhile to pursue multi-core designs.
As with the introduction of other fundamental technolo-
gies (compilers, code-generators), the period of transi-
tion requires extra know-how and brings some discom-
fort.
Before long, we can expect ubiquitous multi-core sup-
port, including the AUTOSAR standards and code-gene-
rators. Complex, single-core projects will be the excepti-
on and will be regarded fondly as antiques.

G O L D E N R U L E S

S U M M A RY

G LO S S A RY

11

12

13

A BB R . E X PA N S I O N
AMP | Asymmetric
multiprocessing

A multi-core system with a separate operating
system per core.

AURIXTM Infi neon family of multi-core processors based
on up to three TriCore CPUs.

Cohesion
Degree to interdependency (data, code
and control fl ow) within a given software
component.

Coupling
Degree to interdependency (data, code and
control fl ow) between different software
components.

IOC

Inter-OS-Application Communicator. Part of
the AUTOSAR OS responsible for managing
communications from one OS-Application to
another and, by implication, from one core to
another.

ISR
Interrupt Service Routine. A short piece
software that executes sequentially to handle
an interrupt.

Multi-core
Having more than one core in a processor.
With no explicit qualifi ers it generally implies
homogeneous multi-core.

Non-blocking
An implementation of some kind of
communication that is guaranteed not to
block.

OS

Operating System. An ambiguous term used
either to mean just a (multitasking) kernel or
the combination of a kernel and low-level
support software, such as device drivers. The
AUTOSAR OS is just a kernel.

OS-Application

AUTOSAR term for a collection of application
software. More than one OS-Application
can run on one core but an OS-Application
cannot span more than one core.

Pipeline

Set of processing stages for handling a
sequence of data items. As soon as the fi rst
data item is passed from the fi rst state to
the second stage, the fi rst stage can start to
process the second item, introducing true
parallelism.

Spinlock
Mechanism for achieving mutual exclusion.
AUTOSAR uses spinlocks for mutual exclusion
across multiple cores in the same processor.

Symmetric
Multiprocessor
System (SMP)

A multi-core system operating under a
single operating system with two or more
homogeneous cores.

TASK
Collection of software that executes
sequentially and often, but not necessarily
periodically.

95%

90%

50%

10%

90%

50%

(SINGLE-)Core Core 0 Core 1

X

X

Peripherals

Heterogeneous

RE F E RE N C E S14

Execution of
myISR1 gets lost!

CORE 0

CORE 1

CORE 2

Accesses to 0xD...
reach the core-local DSPR

Accesses to 0x5..., 0x6..., 0x7...
DSPRs of other cores too

DSPR 0

DSPR 1

DSPR 2

0xD000_0000...

0xD000_0000...

0xD700_0000...

0xD600_0000...

0xD500_0000...

0xD000_0000...

IOC

