
Why we need a new
Worst Case Timing

Approach for Automotive

EMCC2022, 11th Oct 2022, Peter Gliwa

The worst case tale (as told for hundreds of years)

2

STOP

Before telling you how the story ends,
we need to discuss some background.

3

Contents

• Introduction, motivation

• Basics of (Worst Case) Timing Analysis

• Why today’s WCET Analysis is problematic

• Let’s start a new chapter

• Summary

4

Introduction

5

Why care about timing?

• No safe and highly available embedded
software without rock-solid timing.

• If you don’t properly care about timing, it will
get you in the dark (= late in the project).

• Optimized timing can save $$$
(cf. “Timing analysis saves OEM €12m” in my book)

6

Why care about worst case timing?

• Safety-relevant projects need to address
corner-cases not covered by testing.
→ ISO 26262

• Increase availability
The system should still work even if timing
beyond what was tested occurs.
Switching to some error mode is safe but
typically comes with reduced functionality.

7

Now I am safe
but I cannot

move anymore!

Basics of Timing Analysis

8

What are WCET and WCRT?

WCET = Worst Case Execution Time
= theoretical maximum CET

WCRT = Worst Case Response Time
= theoretical maximum RT

9

Overview Analysis Techniques

10

Today’s focus

Static Code Analysis (WCET)

Or (more simple):

ELF in

WCET out

Static code

analysis

11

Static Code Analysis (WCET)

• Example: determine WCET of function someFunction

• How does Static Code Analysis (WCET) work?
• Based on the binary, someFunction gets disassembled

• All calls/jumps get identified, a call tree gets generated.

• Using abstract interpretation, the longest path (greatest
number of loop iterations etc.) through the code is identified.

• The analysis makes sure, that the initial states of cache,
pipeline, etc. are such that the execution of the longest path
shows the maximum possible execution time.

• Does the result depend on the input (test) data?
• No! This is the great advantage of static code analysis.

• However, you might need to annotate (see later).

void someFunction(void)

42

12

Static Code Analysis (WCET)

void someFunction(void)
{

...
}

13

Static Scheduling Analysis (WCRT)

Or (more simple):

OS cfg in

WCRT out

Static

scheduling

analysis

WCET in

14

Why today’s WCET
Analysis is problematic

15

How the worst case tale ends (NO happy end)

16

Prince: “Well, a meteorite might fall onto the end of
your bunch blocking it while a cow passes by getting
trapped in your hair while…….”

And before dashing off, he — instead of killing
the beast — suggests she should cut her hair…

Okay, that was the tale. How about the real world?

• GLIWA does a lot of ‘fire-fighting’:
projects with timing issues ask for help.

• One recent example:
automotive ASIL-D project

• OEM requirement: “The WCET has to be
provided for all tasks and interrupts.”

17

Annotations: time consuming and dangerous

• Abstract interpretation is not always able to
identify the upper loop bound of loops.
→ max. value is used. Here, e.g. a = 232-1

• If the real max. value is, let’s say, 42, the
WCET overestimation in enormous!

• Add an annotation to tell the tool a = 42

• Real projects often have hundreds of
annotations → very time consuming!
→ more important problems get neglected

• Many annotations relate to third party object
code → error-prone, dangerous!

void someFunction(void)
{

unsigned int i;
for (i=0; i<a; i++) {

...
}

}

18

Some thoughts about probability

• Today’s approach

• Timing requirement is defined, e.g. CETTaskB < 1ms

• For safety-relevant projects, this is interpreted as WCETTaskB < 1ms

• Since the WCET is not available, it is implemented as upper_bound < 1ms

• P(CET=WCET) is likely to be a very small number. Think of

• Winning the 6/49 lottery a thousand times in a row

• Blasting a pot of paint and seeing the full text of the bible after the paint settled

• Having all humans wiped out in a second, each by its individual shooting star

• Do such events play any role in our real world’s life?

NO!! So why should they when it comes to timing?

19

What is it that we need?

Definition ‘Real world WCET’
Looking back at the end of the life-
time of all units: greatest CET value
which ever occurred.
Let’s call it RWCET.

20

What does ISO26262 require?
For ASIL-D, less than 10 FIT
meaning less than 10 faults in 109

hours of operation

→ Impossible to translate

to a timing constraint

= Unknown when developing

= Known when developing

Our constraint is actually
RWCET < 1ms

Worst Case rarely is Worst Case

• WCET static code analysis typically

• does not consider interrupts (assumption: there are no interrupts)

• does not consider multicore effects such as conflicts at the memory interface or cross-bar
arbitration (assumption: there are no other cores)

• does not consider DMA (assumption: DMA not used)

• does not consider data cache write-backs (assumption: data caches disabled)

• In the past 20 years, I have not come across a single real project which fulfils these
assumptions.

• The worst case people use in safety relevant projects is not the worst case!

21

Worst Case rarely is Worst Case

• WCET static code analysis typically

• does not consider interrupts (assumption: there are no interrupts)

• does not consider multicore effects such as conflicts at the memory interface or cross-bar
arbitration (assumption: there are no other cores)

• does not consider DMA (assumption: DMA not used)

• does not consider data cache write-backs (assumption: data caches disabled)

• In the past 20 years, I have not come across a single real project which fulfils these
assumptions.

• The worst case people use in safety relevant projects is not the worst case!

22

Let’s start a
new chapter

23

I have a dream…

• In this dream, we get together
• OEMs

• Tier-1s

• Timing tool vendors

• Timing enthusiasts (from universities e.g.)

• We discuss
• The facts

• The needs

• The requirements

• Possible solutions

24

Summary

25

Summary

• Embedded Software Timing does matter!

• OEM’s WCET requirements can lead to poorer quality.
Example: ASIL-D project adds a degradation concept
(and thus more complexity) just to fulfill WCET
requirements.

• Addressing a purely theoretical WCET binds resources
and moves the focus away from real timing issues.

• Let’s get together and think about a more sensible
future worst case timing approach.

26

Thank you

27

