
OS timing hooks
Generic trace interface

Specification – Version 1.4

2

c© by GLIWA — January 22, 2018

http://www.gliwa.com

3

GLIWA GmbH embedded systems
Pollingerstr. 1
82362 Weilheim i.OB.
GERMANY

fon +49 - 881 - 13 85 22 - 0
fax +49 - 881 - 13 85 22 - 99
info@gliwa.com
www.gliwa.com

Document ID: 6-1017-30-20-10-10

c© by GLIWA — January 22, 2018

www.gliwa.com
http://www.gliwa.com

4

To support the fast and reliable integration of 3rd party timing solu-
tions with an OS scheduler, we propose a standard interface of “hooks”
(hook routines) in the OS. If the OS is supplied as source, these could be
implemented with macros. If the OS is supplied as library code, these
must be implemented as callouts. We justify our choice of measurement
points in the context of the accurate timing measurement required by real
automotive projects.

Release Date Author Comment
1.0 2012-09-07 Peter Gliwa First released version
1.1 2013-03-05 Peter Gliwa Minor corrections, appendix added
1.2 2016-03-18 Alexandre Bau-

fumé
Document template update, renaming
and example updated, comments up-
dated in ostimhooks.h

1.3 2017-02-15 Alexandre Bau-
fumé, Peter Gliwa,
Nick Merriam

1. Example reworked, comments
updated in ostimhooks.h

2. update to latest layout
3. Introduced “Conformance Op-

tions”, see 2.1
4. Added macro FAILACT to log

failed task activations
5. Improved section 3.3
6. Added section 2.4
7. Added figures
8. Add missing RELEASE event
9. Renamed event RESUME to

CONTINUE

1.4beta4 2017-05-02 Peter Gliwa

1. added figures and explanations
2. removed failed activation from

task state diagrams
3. introduced NST (net slack time)
4. renamed event ACTIVATION to

ACT
5. introduced events

PSTART, ACT_START,
STOP_ACT_START, RNEXT,
RSTART, RSTOP

c© by GLIWA — January 22, 2018

http://www.gliwa.com

5

1.4beta5 2017-06-02 Peter Gliwa

1. removed ACT_START and
STOP_ACT_START

2. added hook parameters
3. added header template at the end

of the doc

1.4 2018-01-22 Peter Gliwa,
Alexandre Bau-
fumé, Andreas
Knickeberg

1. added alternative to ambiguous
ECC task, see listing 3

2. bug-fix: parameter
classId_ was missing for
OSTH_STOP_PSTART_NOSUSP in
listing 5

3. bug-fix: replaced miss-
ing definitions of macros
OSTH_STOP_(P)START_USER in
listing 5

4. added section 3.4
5. added instrumentation for non-

terminating ECC tasks in case
an event is already set before
WaitEvent is called

Table 1: Document History

c© by GLIWA — January 22, 2018

http://www.gliwa.com

6

Contents

1 Introduction 7
1.1 OSEK/AUTOSAR OS task states . 8
1.2 Timing parameters . 9
1.3 Comments on AUTOSAR OS ECC 9

2 Timing hooks 12
2.1 OStimHooks Conformance Options (OCO) 12
2.2 Definition of the timing hooks . 13
2.3 Task states . 15
2.4 Run-time situation example . 16
2.5 Instrumentation of non-terminating ECC tasks 16
2.6 Instrumentation of runnables . 19

3 Timing measurement 20
3.1 Task start and stop . 20
3.2 Interrupt start and stop . 21
3.3 Resource locks . 22
3.4 Instrumentation gaps . 23

4 Appendix 24

c© by GLIWA — January 22, 2018

http://www.gliwa.com

7

1 Introduction

To support the fast and reliable integration of 3rd party timing solutions with an OS
scheduler, we propose a standard interface of “hooks” (hook routines) in the OS. The
AUTOSAR/OSEK OS standard defines pre and post task hooks and it has been sug-
gested that these hooks are suitable for timing debugging and measurement. Whilst
the OSEK OS task hooks are ideal for other purposes, they have a number of charac-
teristics that make them unsuitable for timing instrumentation:

1. The post task hook does not distinguish between a task being preempted and a
task exiting. Similarly, the pre task hook does not distinguish between a task
being resumed after preemption and a task starting.

2. Each transition from one task to another requires two hook routines. Firstly, this
is inefficient at a potentially time-critical part of the schedule. Secondly, this
tends to lead to the time between the two hook routines being unaccounted to
any task, which means there is CPU load that cannot be properly budgeted for
timing protection, scheduling or CPU load prediction. This makes it impossible
to accurately predict real-time behaviour from the timing measurements.

• Worse still, pre and post task hooks are not called for the idle task, pre-
venting consistent measurement of timing in the idle task.

3. Rather than receiving the identity of the task being entered of left, user code in
the hook routines has to use the OS service GetTaskId. To give an indication of
how inefficient this is, we have observed a real project with a powerful 150MHz
embedded CPU where 0.5% of the entire CPU load was consumed just calling
GetTaskId in the task hooks.

4. The OS task hooks are explicitly not intended for use in a production system.
Timing protection at the task level is provided for by the AUTOSAR OS tim-
ing protection mechanism. If the system safety concept requires that timing is
controlled at a finer granularity, for example at software component boundaries,
then such timing control cannot be implemented.

As a result, we propose hooks specifically intended for timing debugging and mea-
surement that avoid the problems listed above.

If the OS is supplied as source, these hooks could be implemented with macros. If
the OS is supplied as library code, these must be implemented as call-outs. We justify
our choice of measurement points in the context of the accurate timing measurement
required by real automotive projects.

Key new aspects of our approach include explicit treatment of the following:

• Measurement limitations and the measurement errors that arise

– In contrast, other approaches have ignored measurement errors, with the
result that they remain uncorrected in the final timing data. At best this
leads to wasted capacity, at worst it leads to incorrect timing designs.

• Use of timing measurement results for scheduling analysis, including the conse-
quence of errors

c© by GLIWA — January 22, 2018

http://www.gliwa.com

8

• Supervisor and user mode contexts

• Contexts (user mode) that can and cannot disable interrupts

• Contexts (user mode) that can and cannot write to shared memory

• Timing on multiple, parallel cores

Section 1.1 gives a brief summary of the OSEK/AUTOSAR OS task states and
based on this summary, section 1.2 defines timing parameters. We present the hooks
themselves in Section 2. The justification, in terms of measurement advantages, is
explained in Section 3.

1.1 OSEK/AUTOSAR OS task states

AUTOSAR OS uses the scheduling concept as defined by OSEK. OSEK defines
task-states for two different conformance classes, BCC (Basic Conformance Class)
and ECC (Extended Conformance Class). The corresponding task-state diagrams are
shown in figures 1 and 2.

Figure 1: Task states and transitions as defined by AUTOSAR OS BCC

Figure 2: Task states and transitions as defined by AUTOSAR OS ECC

c© by GLIWA — January 22, 2018

http://www.gliwa.com

9

1.2 Timing parameters

Figure 3 shows the principle timing parameters of a task that determine its real-time
behavior within a system and table 2 defines the symbols used. Note that the color
used to indicate a task’s current state at a given point in time corresponds to the color
used for this state in figure 2.

Figure 3: Timing parameters visualised in a trace (all related to TASK B)

1.3 Comments on AUTOSAR OS ECC

Typically, AUTOSAR OS tasks get started and then terminate at some point in time.
This is absolutely mandatory for tasks of the AUTOSAR OS basic conformance class
(BCC) and should also be the case for AUTOSAR OS extended conformance class
(ECC) tasks.

However, there are set-ups with tasks that do not terminate but rather loop, using
WaitEvent for scheduling. This is often true for RTE tasks being generated by the
RTE configuration environment. See listing 1 for an example. Rather than having
two periodical BCC tasks – e.g. Main_Task_5ms calling CanTp_MainFunction and
CanXcp_MainFunction as well as Main_Task_10ms calling CanNm_MainFunction and
CanSM_MainFunction – the RTE configurator generates a non terminating ECC task
and adds a second level of scheduling being controlled by WaitEvent and SetEvent.

Listing 1: Non terminating ECC task using events for scheduling
TASK(Main_Task)
{
EventMaskType ev;

c© by GLIWA — January 22, 2018

http://www.gliwa.com

10

ID Abr. Name EN Description
1 IPT initial pending time from activation to start
2 CET core execution time

(computation time)
execution time not including any preemp-
tions or “waiting” time

3 GET gross execution time execution time including all preemptions
and “waiting” time

4 RT response time from activation to termination
5 DL dead line max. allowed response time
6 DT delta time from start to start (“measured period”)
7 PER period from activation to activation (period not as

measured but as configured)
8 ST slack time “remaining” run-time: from termination to

activation (tasks) or start (interrupts)
8 NST net slack time “potential additional” run-time: the ST mi-

nus all CET blocks of any TASKs or ISRs
with higher priority during the ST

10 JIT jitter deviation of delta time from period

Table 2: Timing information

for(;;)
{
(void)WaitEvent(Rte_Ev_Cyclic2_Main_Task_0_10ms |

Rte_Ev_Cyclic2_Main_Task_0_5ms);

(void)GetEvent(Main_Task, &ev);

(void)ClearEvent(ev & (Rte_Ev_Cyclic2_Main_Task_0_10ms |
Rte_Ev_Cyclic2_Main_Task_0_5ms));

if ((ev & Rte_Ev_Cyclic2_Main_Task_0_10ms) != (EventMaskType)0)
{
CanNm_MainFunction();
CanSM_MainFunction();
}

if ((ev & Rte_Ev_Cyclic2_Main_Task_0_5ms) != (EventMaskType)0)
{
CanTp_MainFunction();
CanXcp_MainFunction();
}

}

We will not elaborate on all the disadvantages of this approach at this point but we
have to address non-terminating ECC tasks and allow timing analysis also for this
case. The previous definition of the CET e.g. fails. For terminating tasks (BCC as
well as ECC), the CET was defined as the sum of all “running” states between the start
and the termination of the task. Obviously, the CET becomes infinite if the task does
not terminate.

Figure 4 resembles figure 3 but now Task B is a non-terminating ECC task. Who-
ever implemented the task would expect the timing properties to be computed for one
“round” of the endless-loop. The gap between two subsequent rounds reflects a pseudo
suspended state for Task B and thus is visualized with transparency added to the wait-

c© by GLIWA — January 22, 2018

http://www.gliwa.com

11

ing state in figure 4.
Since the loop might include the usage of “regular” events, we now have to dis-

tinguish such “regular” events and their corresponding WaitEvent call from the events
used for scheduling and their corresponding WaitEvent call. Listing 2 is derived

Figure 4: Timing parameters related to TASK B (here a non-terminating ECC task)

from listing 1. Comments have been added for explanation and to indicate when
the task changes its state. Additionally, the task now also has a “regular” event
Can_Ev_TriggerSM_Main_Task. The scheduling situation shown in figure 4 corresponds to
listing 2.

Listing 2: Non terminating ECC task using events for scheduling
TASK(Main_Task)
{
// Task starts here
EventMaskType ev;

for(;;) // non-terminating ECC task
{
// Task "ends" here (in fact it will switch to waiting)
// the following WaitEvent call is a "scheduling" WaitEvent
(void)WaitEvent(Rte_Ev_Cyclic2_Main_Task_0_10ms |

Rte_Ev_Cyclic2_Main_Task_0_5ms);
// Task "starts" here again (in fact it returned from waiting)

(void)GetEvent(Main_Task, &ev);

(void)ClearEvent(ev & (Rte_Ev_Cyclic2_Main_Task_0_10ms |

c© by GLIWA — January 22, 2018

http://www.gliwa.com

12

Rte_Ev_Cyclic2_Main_Task_0_5ms |
Can_Ev_TriggerSM_Main_Task));

if ((ev & Rte_Ev_Cyclic2_Main_Task_0_10ms) != (EventMaskType)0)
{
CanNm_MainFunction();
// the following WaitEvent call is a "regular" WaitEvent
(void)WaitEvent(Can_Ev_TriggerSM_Main_Task);
CanSM_MainFunction();
}

if ((ev & Rte_Ev_Cyclic2_Main_Task_0_5ms) != (EventMaskType)0)
{
CanTp_MainFunction();
CanXcp_MainFunction();
}

}

The recommended task configuration for the same set-up is shown in listing 3. For
each period – here 5ms and 10ms – it uses a dedicated task. Whenever possible, the
task should be a BCC1 task. All tasks terminate.

Listing 3: Recommended configuration using a separate task per period
TASK(Main_Task_10ms) // ECC
{
CanNm_MainFunction();
// the following WaitEvent call is a "regular" WaitEvent
(void)WaitEvent(Can_Ev_TriggerSM_Main_Task);
CanSM_MainFunction();
TerminateTask();

}

TASK(Main_Task_5ms) // BCC1
{
CanTp_MainFunction();
CanXcp_MainFunction();
TerminateTask();

}

2 Timing hooks

The timing hooks described in this section support the fast and reliable integration of
3rd party instrumentation based timing solutions with an OS scheduler.

2.1 OStimHooks Conformance Options (OCO)

Instrumentation-based timing measurement or tracing has an impact on the software.
The instrumentation is always a trade-off between many details with a high im-
pact/overhead or fewer details with a smaller impact/overhead. In order to offer a
scalable interface, Conformance Options define certain sets of macros and are identi-
fied by their ID (OCO1, OCO2, etc.).

Except for OCO2 the following general rule applies: the more options are chosen,
the more events are logged, the more details are gained and the higher the impact/over-
head. OCO2 includes a set of macros which combine more than one transition in one
single event reducing the impact/overhead and – at the same time – increasing preci-
sion.

c© by GLIWA — January 22, 2018

http://www.gliwa.com

13

Table 3 shows all Conformance Options and a brief description for each. The colors
found in the table are also used in the figures mapping the events onto the task-state
schemes.

Conformance option ID Description
OCO1 Macros related to task activations
OCO2 Macros for logging combined events for higher precision

and more efficiency compared to separate events
OCO3 AUTOSAR events realated macros logging entry into and

exit from the AUTOSAR OS ECC task state “waiting”
OCO4 Macros for logging events related to interrupt suspension

or resources
OCO5 Macros for logging error related events
OCO6 Macros for logging runnables

Table 3: OStimHooks conformance options (OCO)

2.2 Definition of the timing hooks

Table 4 shows the OS events to be instrumented and the required hooks for tracing or
measuring the timing properties in table 2. To get a complete hook name, the prefix
string OSTH_ needs to be put at the beginning and the the correct suffix from table 5
according to the context from which the hook is called needs to be appended.
OSTH_ACT_NOSUSP is one example for a complete hook name, OSTH_LOCK_STOP_SPRVSR an-

other. In the following we will use only the relevant part of a hook name.
Where multiple events may be logged, the component parts are joined with under-

score “_” to make this “first part”, for example START_STOP.
STOP_START should always be used in preference to separate stop and start hooks if at

all possible. Separate hooks leave a gap that cannot be correctly attributed to any task,
whereas STOP_START ensures a continuous trace with no unattributed gap, see section 3.4
“Instrumentation gaps”.

The macros and events are defined in a way that blocking can be considered cor-
rectly. Blocking occurs when a task or ISR of higher priority than the running task is
inhibited from preempting by a resource lock.

2.2.1 Parameters passed to the hoooks

The parameters passed to a hook depend on its type and the context.

schedId identifies a schedulable. A schedulable is either a TASK or an ISR.

lockId Implementation specific. Might be e.g. an ID of a spinlock or the ID of a
resource or it might be a priority.

runnableId identifies a runnable.

c© by GLIWA — January 22, 2018

http://www.gliwa.com

14

coreId For single core applications, this parameter is ignored. for multi core applica-
tions the coreId identifies the core on which the event related to the hook takes
place.

classId This may be ignored but it can be used to split the instrumentation into classes
such that the instrumentation in a class cannot be preempted by instrumentation
in the same class.

No. Event description Task state transi-
tion

Para-meter First part of
hook name

Confor-
mance
option

1 Prompt Start of a task or
interrupt that appears to
switch from Suspended to
Running “promptly” as no
ready state was observed.

Suspended →

Running
schedId PSTART manda-

tory

2 Termination of a task or
end of an interrupt

Running → Sus-
pended

schedId STOP manda-
tory

3 Successful task activation Suspended
→ Activated
(Ready)

schedId ACT OCO1

4 Start of a task or interrupt Activated
(Ready) →

Running

schedId START OCO1

6 Very short ISR where only
one hook is possible

Suspended →

Running →

Suspended

schedId PSTART_STOP OCO2

7 End of one task/ISR and
the start of the next with-
out return to a preempted
context. The parameter
schedulableId indicates
the schedulable which is
started. The schedula-
ble which is stopped is
identified by implication.

Running → Sus-
pended for one
task and Ready
→ Running for
the next or Run-
ning → Running
for the same task
(reset CET calcu-
lation)

schedId STOP_START OCO2

9 Continuation of a termi-
nating task which previ-
ously was in the Waiting
state

Released (Ready)
→ Running

schedId CONTINUE OCO3

10 Suspension of a terminat-
ing task

Running→Wait-
ing

schedId SUSPEND OCO3

11 Release of a terminating
task

Waiting → Re-
leased (Ready)

schedId RELEASE OCO3

12 Commence lock of re-
source/interrupt

none lockId LOCKING OCO4

13 Complete lock, especially
spinlock

none lockId LOCKED OCO4

14 Unlock resource/interrupt none lockId UNLOCK OCO4

c© by GLIWA — January 22, 2018

http://www.gliwa.com

15

15 Failed activation, specifi-
cally task over-activation
(error E_OS_LIMIT
as defined in AU-
TOSAR OS)

none schedId FAILACT OCO5

16 Killing of a task or inter-
rupt

undefined schedId KILL OCO5

17 End of one runnable (if
any) and Start of the next
runnable (if any). Works
only for a fixed, uncon-
ditional runnable to task
mapping. No parameter
required: the correspond-
ing schedulable will be
derived from other events.

none none RNEXT OCO6

18 Start of a runnable none runnableId RSTART OCO6
19 End of a runnable none runnableId RSTOP OCO6

Table 4: Hooks (first part of the hook name indicating the event)

Context description Second part of hook name
Interrupts are disabled when hook is
called

_NOSUSP

The called hook may disable interrupts _SPRVSR
The called hook cannot disable inter-
rupts

_USER

Table 5: Hooks (second part of the hook name indicating the context)

2.3 Task states

Figures 5, 6 and 7 show task state diagrams which correspond to some of the Con-
formance Options. Note that the arrows between the states now reflect events rather
than transitions. Exception: the transitions “Preemption” and “Resumption”. These
transitions can be deducted from a trace and thus there is no need for a corresponding
event.

The numbers in circles correspond to the column “ID” in table 4 and the color
of the event arrows reflect the corresponding Conformance Option as defined in table 3.

Side remark: the first occurrence of Task B in figure 3 shows three blocks where the
task is in the AUTOSAR OS Ready state. With the state scheme presented in figure 7,
we can describe the run-time situation with a greater level of detail. The first Ready
block of Task B reflects the Activated (Ready) state, the second the Ready (Ready) state

c© by GLIWA — January 22, 2018

http://www.gliwa.com

16

– as a result of a preemption by Task A – and the third block indicates the Released
(Ready) state reflecting that the event Task B had been waiting for was set.

Figure 7 shows also the STOP_START event which is used to reset the calculation of the
CET for a non-terminating ECC task when a “scheduling” WaitEvent is called and one of
the events that task shall wait for is already set. In this case normally no rescheduling
takes place and therefore the task remains in the “Running” state. Therefore it is
mandatory that the OS provides a hook for this scenario.

Figure 5: Minimalistic task state scheme with the mandatory start and stop events

Figure 6: Task state scheme representing a BCC set-up

2.4 Run-time situation example

Figure 8 illustrates a run-time situation with three tasks and three interrupts. The
numbers in the figure correspond to the numbers in the first column of table 4.

2.5 Instrumentation of non-terminating ECC tasks

Following the thoughts of section 1.3 “Comments on AUTOSAR OS ECC” on page 9,
this section describes how to instrument non-terminating ECC tasks.

c© by GLIWA — January 22, 2018

http://www.gliwa.com

17

①
④

②

③

Preemption

Activated

Running

Suspended

PSTART

STOP

ACT

START

Ready Resumption
Waiting

SUSPEND

RELEASE

⑩

⑪

(Ready)

Released
(Ready)

(Ready)

CONTINUE

A
U

T
O

SA
R

 O
S defines a

single R
eady state only

ACT_START

PSTART_STOP

STOP_START

⑦

Figure 7: Task state scheme representing an ECC set-up

Figure 8: Run-time situation with most of the events (missing: 12-14; 17-19)

Non-terminating ECC tasks should be instrumented using stop and start events. This
is because each return from WaitEvent is to be treated as the start of a new task in-
stance, where the CET should be reset to zero. The suspend and resume events are
only to be used for tasks where the return from a call to WaitEvent should not be con-
sidered the start of a new task instance and CET should continue to accumulate. See
also figure 8

c© by GLIWA — January 22, 2018

http://www.gliwa.com

18

The hooks are located in places that both allow the OS easy access to the arguments
to the hook macros or functions and that satisfy the constraints described in Section 3.

c© by GLIWA — January 22, 2018

http://www.gliwa.com

19

2.6 Instrumentation of runnables

Runnables are not directly related to scheduling, they are part of the code that gets
executed when a task gets executed. However, since runnables play a fundamental
role in the AUTOSAR concept, it makes sense to also standardize the instrumentation
of runnables for two reasons:

1. Runnables which get traced can be visualized.

2. Some of the timing parameters can be calculated for runnables, namely CET,
GET and DT.

Table 4 defines three macros related to runnables. The functionality of RSTART and RSTOP
is obvious, they mark the beginning and the end of a runnable. However, having two
events per runnables means a significant tracing overhead when tracing all runnables
at the same time. Today’s engine management systems typically have more than 2000
runnables so the overhead for tracing all of them using RSTART and RSTOP would be sig-
nificant.

Although AUTOSAR does not exactly specify how runnables shall be called, the
typical implementation places the corresponding function calls sequentially into a task.
There might be Schedule() OS service calls in order to allow task switches for a NON-
PREEMPTABLE task but this is not regarded as a runnable. Additionally, there is
the final function call to TerminateTask() but apart from that all other function calls are
typically runnables. See listing 4 for an example.

Listing 4: Typical task implementation: task calls runnables
TASK(TaskB)
{
MyRunnable1();
MyRunnable2();
Schedule();
MyRunnable3();
Schedule();
MyRunnable4();
MyRunnable5();
MyRunnable6();
TerminateTask();

}

Figures 9 and 10 show an identical run-time situation where Task B with its 6 runnables
gets preempted by Task A. Figure 9 shows the instrumentation with one RSTART and one
RSTOP event for each runnable. Figure 10 shows the instrumentation with one RNEXT
event between the runnables. The instrumentation with one RNEXT event between the
runnables requires a strictly static and non-conditional mapping of runnables to tasks.
In other words: Each task always calls the same set of runnables and always in the
same order.

Note that the start-time of the task is also implicitly used as the start-time of the
first runnable and the termination-time of the task is implicitly used as the stop-time
of the last runnable. Also note that there are no longer gaps between the runnables. In
figure 9 there were gaps and they were even bigger where there were calls to Schedule()
in the task.

This level of detail is sacrificed for the higher efficiency (in this case 5 events for
tracing the runnables rather than 12 events).

c© by GLIWA — January 22, 2018

http://www.gliwa.com

20

Figure 9: Run-time situation with runnables instrumented (RSTART/RSTOP)

Figure 10: Run-time situation with runnables instrumented (RNEXT)

3 Timing measurement

Having established which events should be logged, we now have to consider when
these events should be logged. Even if the ideal cannot be achieved, we should deter-
mine the ideal times for instrumentation.

3.1 Task start and stop

We start from the concept of computation time (CET) and three principles:

• CETs are themselves predictable, not depending on remote parts of the configu-
ration

– for example, CET should not depend on the priority of the task in which
the code eventually runs, although GET may well vary greatly with priority

• CETs can be used to predict worst-case GET and RT values with static analysis

• CETs can be used to determine CPU load, or equivalently, CPU load can be
partitioned in to CETs

Previous works have sometimes failed to attribute all CPU load to CETs. This
unattributable CPU load has been dubbed “OS overhead” without defining exactly

c© by GLIWA — January 22, 2018

http://www.gliwa.com

21

what that means or how it should be handled with regard to timing protection, for ex-
ample. In contrast, we aim to attribute all CPU load to CETs, that is, every part of the
CPU load will be attributed to the task that causes that CPU load. This means that the
CET for a task is significantly longer than the time between the start of user code and
the entry to TerminateTask. It may well be interesting and useful to measure the time
between the start of user code and the entry to TerminateTask but that is not the task
CET.

The first principle of CETs is predictability, that if a function F is called in the
same way from two different contexts it should have the same execution time. This
is required in order that, for example, a library supplier can tell you the timing of the
library functions without knowing the context from which they are called. Consider a
possible function F:

void F(void)
{
ActivateTask(Task_A);

}

Suppose that F is called from a task Task_B with lower priority than Task_A and
that resource Resource is shared by both tasks and that no interrupt handlers preempt
during this code. We need F to have the same execution time in the following two
contexts:

/* Context 1: task switch to Task_A happens within F */
F();

(void)GetResource(Resource);
/* Context 2: no task switch happens within F */
F();
/* Task switch to Task_A happens within ReleaseResource */
(void)ReleaseResource(Resource);

This allows us to define exactly what part of the real time is the execution of F and
which is the execution of Task_A. Since we need F to have the same execution time in
both contexts, exactly the difference between the GET for F in the two contexts must
be attributed to the CET of Task_A.

Interestingly, as we trace a task starting and stopping, we have freedom about when
exactly we trace the start and stop events since this observation only constrains the time
spanned between the start and the stop events. This freedom allows the instrumentation
hooks to be positioned for maximum efficiency.

3.2 Interrupt start and stop

In Section 3.1, we observed that the dispatch of a task or not should leave the underly-
ing code CET unchanged. Similarly, the running of an interrupt should not change the
CET of the interrupted code. However, it is impossible to include the entire CET of an
interrupt using software measurement since the start instrumentation must occur after
the true start of the interrupt and the stop instrumentation must occur before the true
resumption of interrupted code. This means that a measured interrupt CET will always
be smaller than the actual interrupt CET. The execution time that is not attributed to the
interrupt handler will be wrongly attributed to the underlying code. Since almost any
code can be interrupted, there is the possibility that the measurement of a very short

c© by GLIWA — January 22, 2018

http://www.gliwa.com

22

and frequently called function could result in a proportionately large overestimation of
that function’s CET.

Consider the example of a function that always runs for 200ns. If we measure
this function without interrupts, we will measure 200ns. However, if the function is
interrupted while being measured, and the start event is recorded 500ns after the true
start and the stop event is recorded 400ns before the true resumption of the function
then a measured CET of 1100ns would result. This will have minimal impact on the
average CET but will, of course, set the maximum CET to 1100ns, more than 5 times
greater than the real CET. If this frequently called function actually consumes 2% of
the CPU load then a simplistic multiplication of the frequency by the maximum CET
would appear to show that this function can consume 11% of the CPU load, giving a
quite wrong impression.

As a result, it is desirable to record an interrupt start event as close as possible to the
actual start of the handler and to record an interrupt stop event as close as possible to
the actual end of the handler.

The issue with tasks is not so acute as with interrupts, since task switches result from
the use of ActivateTask and ReleaseResource and cannot occur in arbitrary contexts.

3.3 Resource locks

When instrumenting resource locks, the interesting timing information is the maxi-
mum time for which a higher priority task can be blocked. To ensure that blocking
is not underestimated, we can measure the entire time from the start of the call to
GetResource to the end of the call to ReleaseResource. Note that, since interrupts
are typically disabled during OS services, the blocking time includes the execution of
GetResource and ReleaseResource. With the priority ceiling protocol, blocking
can occur at most once, so any slight overestimation of the the blocking time has a
very minor impact.

However, if the instrumentation is added before the call the GetResource then it is
possible that we could trace an interrupt apparently occurring within a resource lock
that should inhibit that interrupt. Consider the example in Figure 11.

OSTH_LOCK_STOP_SPRVSR(ResourceTraceID,
0 /* single core */,
OS_TIMER() /* internal timestamp */);

/*
* Interrupt occurs here, which will be inhibited
* by locking resource ’Resource’
*/
(void)GetResource(Resource);
...
(void)ReleaseResource(Resource);
OSTH_UNLOCK_SPRVSR(ResourceTraceID,

0 /* single core */,
OS_TIMER() /* internal timestamp */);

Figure 11: Unsuitable instrumentation of resource lock

Note that a naive instrumentation of OS code inside the services GetResource and
ReleaseResource could lead to an unsafe, underestimation of the blocking time.

c© by GLIWA — January 22, 2018

http://www.gliwa.com

23

Thus we have to instrument the obtaining of a resource as close as possible to the
start of GetResource and we have to instrument the releasing of a resource as close as
possible to the end of ReleaseResource but strictly before allowing pre-emption (that
arises from releasing the resource).

For an ordinary resource, GetResource is typically instrumented just using a lock
stop event at the start of the GetResource. In the case of a spinlock, the time required
to obtain the lock is variable and may itself be an interesting subject of measurement.
To facilitate this, locking can be instrumented using two events, lock start and lock
stop:
OSTH_LOCK_START_SPRVSR(SpinlockTraceID,

0 /* single core */,
OS_TIMER() /* internal timestamp */);

GetSpinLock(Spinlock);
OSTH_LOCK_STOP_SPRVSR(SpinlockTraceID,

0 /* single core */,
OS_TIMER() /* internal timestamp */);

...
ReleaseSpinLock(Spinlock);
OSTH_UNLOCK_SPRVSR(SpinlockTraceID,

0 /* single core */,
OS_TIMER() /* internal timestamp */);

Note that this example is only here to illustrate the use of lock start and lock stop
events. It does not, of course, take into account the issues of potentially underestimat-
ing the blocking time or tracing the unlock event too late after the actual unlocking.

3.4 Instrumentation gaps

One issue arises when using the simple instrumentation with only START and STOP.
Consider the following two examples, in both of which tasks A and B preempt task C.

In figure 12, two hooks are used for the transition A→B resulting in two different
timestamps. The gap created represents small portion of time that is, incorrectly, allo-
cated to the low priority task C. In figure 13, a single event STOP_START is traced,
saving one hook and creating a single event with a single timestamp. The result is that
all time is correctly attributed to tasks A and B and no time is allocated to task C at
this task switch.

This optimization improves resource consumption by saving one call, timing accu-
racy by tracing a single timestamp, and visualization as there is no ambiguity about
the pre-empted, low priority task.

c© by GLIWA — January 22, 2018

http://www.gliwa.com

24

Task A

Task B

Task C

prio

④
③ ③ ②

④
③ ②

②
④

Gap due to different timestamps

Figure 12: Task chaining instrumented with two events (STOP/START)

Task A

Task B

Task C

prio

④
③

⑦
③ ②

④
③ ②

Figure 13: Task chaining instrumented with one event (STOP_START)

4 Appendix

Listing 5: Template header for mapping OS related events on trace functions
/***
* FILE: ostimhooks.h
*
* DESCRIPTION: Hook macros for use in an OS supporting timing measurement.
*
* $Author: alexandrebau $
*
* $Revision: 39861 $
*
* $URL: https://gliwa.com/svn/repos/1017_OStimHooks/trunk/50_src/ostimhooks.h $
*
* Copyright: GLIWA GmbH embedded systems
* Weilheim i.OB
* All rights reserved
***/

c© by GLIWA — January 22, 2018

http://www.gliwa.com

25

#ifndef OSTIMHOOKS_H_
#define OSTIMHOOKS_H_ (1)

/*
* For single core applications, the argument coreId_ is ignored.
*
* The _NOSUSP variants have a classId_ parameter. This may be ignored
* but it can be used to split the instrumentation into classes such
* that the instrumentation in a class cannot be preempted by
* instrumentation in the same class.
*
* schedId_ identifies a schedulable. A schedulable is either a TASK or an ISR.
*
* All these hooks are meant to be used inside the OS.
* Instrumentation of e.g. ’naked’ ISRs should be done by other means.
*/

/*
* Hooks for use in supervisor mode where interrupts
* can be and may need to be disabled.
* Inside the OS code this is typically the case, so
* these hooks are the most common choice.
*/
/* Activation of a task */
#define OSTH_ACTIVATE_SPRVSR(schedId_, coreId_)
/* Start of a task or ISR */
/* To be used when a new instance of a task or Cat-2 ISR is started (dispatched) */
#define OSTH_START_SPRVSR(schedId_, coreId_)
/*
* Optionally to be used when a new instance of a task or Cat-2 ISR is started
* (dispatched) when it is known that no corresponding activation event was logged.
*/
#define OSTH_PSTART_SPRVSR(schedId_, coreId_)
/* End of a task or Cat-2 ISR */
/* ChainTask or TerminateTask in AUTOSAR terms when we return to the preempted context */
#define OSTH_STOP_SPRVSR(schedId_, coreId_)
/* Start and end of a short ISR where only one hook is possible */
#define OSTH_START_STOP_SPRVSR(schedId_, coreId_)
/*
* End of one task or Cat-2 ISR and the start of the next without return to a
* preempted context.
* ChainTask or TerminateTask in AUTOSAR terms when we do not return to the preempted
* context. The stopping schedulable is inferred from earlier events.
*/
#define OSTH_STOP_START_SPRVSR(startSchedId_, coreId_)
/* As above but when no corresponding activation event was logged. */
#define OSTH_STOP_PSTART_SPRVSR(startSchedId_, coreId_)
/*
* Release of a waiting task
* (used within the SetEvent implementation where a waiting task is being released).
*/
#define OSTH_RELEASE_SPRVSR(schedId_, coreId_)
/* Resumption of a task (return from WaitEvent) */
#define OSTH_RESUME_SPRVSR(schedId_, coreId_)
/* Suspension of a task (entry to WaitEvent) */
#define OSTH_SUSPEND_SPRVSR(schedId_, coreId_)
/*
* The following instrumentation hooks are optional for purely minimal tracing,
* however, for a full understanding of the events that drive the actual shedule
* it is highly recommended to make these available.
*/
/*
* Commence lock of resource or interrupts (to raise the running priority)
* In AUTOSAR context, a call to LockResource (see priority ceiling protocol),
* a call to DisableAllInterrupts, SuspendAllInterrupts or SuspendOSInterrupts,

c© by GLIWA — January 22, 2018

http://www.gliwa.com

26

* or spinlocks (GetSpinlock always, TryToGetSpinlock when it succeeds).
* Tracing this event is necessary regardless of an actual change in effective
* priority.
*/
#define OSTH_LOCK_START_SPRVSR(lockId_, coreId_)
/* Complete acquisition of a lock, especially important for spinlock. */
/* In AUTOSAR context to be used inside GetSpinlock to measure spinning time. */
#define OSTH_LOCK_STOP_SPRVSR(lockId_, coreId_)
/* Unlock of resource or interrupts (to lower the running priority) */
#define OSTH_UNLOCK_SPRVSR(lockId_, coreId_)

/*
* Hooks for use where instrumented code cannot preempt, therefore instrumented code
* cannot be preempted by instrumented code. This is always the case when all interrrupts
* are disabled or in a purely cooperative multitasking environment,
* there may be other cases in which this condition holds.
*/
/* Activation of a task */
#define OSTH_ACTIVATE_NOSUSP(schedId_, coreId_, classId_)
/* Start of a task or ISR */
/* To be used when a new instance of a task or Cat-2 ISR is started (dispatched) */
#define OSTH_START_NOSUSP(schedId_, coreId_, classId_)
/*
* Optionally to be used when a new instance of a task or Cat-2 ISR is started
* (dispatched) when it is known that no corresponding activation event was logged.
*/
#define OSTH_PSTART_NOSUSP(schedId_, coreId_, classId_)
/* End of a task or Cat-2 ISR */
/* ChainTask or TerminateTask in AUTOSAR terms when we return to the preempted context */
#define OSTH_STOP_NOSUSP(schedId_, coreId_, classId_)
/* Start and end of a short ISR where only one hook is possible */
#define OSTH_START_STOP_NOSUSP(schedId_, coreId_, classId_)
/*
* End of one task or Cat-2 ISR and the start of the next without return to a
* preempted context.
* ChainTask or TerminateTask in AUTOSAR terms when we do not return to the preempted
* context. The stopping schedulable is inferred from earlier events.
*/
#define OSTH_STOP_START_NOSUSP(startSchedId_, coreId_, classId_)
/* As above but when no corresponding activation event was logged. */
#define OSTH_STOP_PSTART_NOSUSP(startSchedId_, coreId_, classId_)
/*
* Release of a waiting task
* (used within the SetEvent implementation where a waiting task is being released).
*/
#define OSTH_RELEASE_NOSUSP(schedId_, coreId_, classId_)
/* Resumption of a task (return from WaitEvent) */
#define OSTH_RESUME_NOSUSP(schedId_, coreId_, classId_)
/* Suspension of a task (entry to WaitEvent) */
#define OSTH_SUSPEND_NOSUSP(schedId_, coreId_, classId_)
/*
* The following instrumentation hooks are optional for purely minimal tracing,
* however, for a full understanding of the events that drive the actual shedule
* it is highly recommended to make these available.
*/
/*
* Commence lock of resource or interrupts (to raise the running priority)
* In AUTOSAR context, a call to LockResource (see priority ceiling protocol),
* a call to DisableAllInterrupts, SuspendAllInterrupts or SuspendOSInterrupts,
* or spinlocks (GetSpinlock always, TryToGetSpinlock when it succeeds).
* Tracing this event is necessary regardless of an actual change in effective
* priority.
*/
#define OSTH_LOCK_START_NOSUSP(lockId_, coreId_, classId_)
/* Complete acquisition of a lock, especially important for spinlock. */

c© by GLIWA — January 22, 2018

http://www.gliwa.com

27

/* In AUTOSAR context to be used inside GetSpinlock to measure spinning time. */
#define OSTH_LOCK_STOP_NOSUSP(lockId_, coreId_, classId_)
/* Unlock of resource or interrupts (to lower the running priority) */
#define OSTH_UNLOCK_NOSUSP(lockId_, coreId_, classId_)

/*
* Hooks for use in user mode where interrupts may need to be disabled
* but cannot be directly disabled. If these hooks are used, the integrator
* has to provide a means of disabling interrupts from user mode,
* e.g. by usingCallTrustedFunction in AUTOSAR. Therefore the other
* hooks should be used in preference.
*/
/* Activation of a task */
#define OSTH_ACTIVATE_USER(schedId_, coreId_)
/* Start of a task or ISR */
/* To be used when a new instance of a task or Cat-2 ISR is started (dispatched) */
#define OSTH_START_USER(schedId_, coreId_)
/*
* Optionally to be used when a new instance of a task or Cat-2 ISR is started
* (dispatched) when it is known that no corresponding activation event was logged.
*/
#define OSTH_PSTART_USER(schedId_, coreId_)
/* End of a task or Cat-2 ISR */
/* ChainTask or TerminateTask in AUTOSAR terms when we return to the preempted context */
#define OSTH_STOP_USER(schedId_, coreId_)
/* Start and end of a short ISR where only one hook is possible */
#define OSTH_START_STOP_USER(schedId_, coreId_)
/*
* End of one task or Cat-2 ISR and the start of the next without return to a
* preempted context.
* ChainTask or TerminateTask in AUTOSAR terms when we do not return to the preempted
* context. The stopping schedulable is inferred from earlier events.
*/
#define OSTH_STOP_START_USER(startSchedId_, coreId_)
/* As above but when no corresponding activation event was logged. */
#define OSTH_STOP_PSTART_USER(startSchedId_, coreId_)
/*
* Release of a waiting task
* (used within the SetEvent implementation where a waiting task is being released).
*/
#define OSTH_RELEASE_USER(schedId_, coreId_)
/* Resumption of a task (return from WaitEvent) */
#define OSTH_RESUME_USER(schedId_, coreId_)
/* Suspension of a task (entry to WaitEvent) */
#define OSTH_SUSPEND_USER(schedId_, coreId_)
/*
* The following instrumentation hooks are optional for purely minimal tracing,
* however, for a full understanding of the events that drive the actual shedule
* it is highly recommended to make these available.
*/
/*
* Commence lock of resource or interrupts (to raise the running priority)
* In AUTOSAR context, a call to LockResource (see priority ceiling protocol),
* a call to DisableAllInterrupts, SuspendAllInterrupts or SuspendOSInterrupts,
* or spinlocks (GetSpinlock always, TryToGetSpinlock when it succeeds).
* Tracing this event is necessary regardless of an actual change in effective
* priority.
*/
#define OSTH_LOCK_START_USER(lockId_, coreId_)
/* Complete acquisition of a lock, especially important for spinlock. */
/* In AUTOSAR context to be used inside GetSpinlock to measure spinning time. */
#define OSTH_LOCK_STOP_USER(lockId_, coreId_)
/* Unlock of resource or interrupts (to lower the running priority) */
#define OSTH_UNLOCK_USER(lockId_, coreId_)

c© by GLIWA — January 22, 2018

http://www.gliwa.com

28

#endif /* OSTIMHOOKS_H_ */

c© by GLIWA — January 22, 2018

http://www.gliwa.com

29

c© by GLIWA — January 22, 2018

http://www.gliwa.com

	Introduction
	OSEK/AUTOSAR OS task states
	Timing parameters
	Comments on AUTOSAR OS ECC

	Timing hooks
	OStimHooks Conformance Options (OCO)
	Definition of the timing hooks
	Task states
	Run-time situation example
	Instrumentation of non-terminating ECC tasks
	Instrumentation of runnables

	Timing measurement
	Task start and stop
	Interrupt start and stop
	Resource locks
	Instrumentation gaps

	Appendix

