WE DEVELOP PRECISION

an an

TII

TIMING SUITE FOR REAL-TIME SYSTEMS

TIMING 1st CLASS

T1 - THE COMPREHENSIVE SOLUTION FOR RUN-TIME SYSTEMS

T1 is the most comprehensive timing suite for the analysis of runtime properties of real-time systems. The sophisticated representation makes complex software behaviours easy to understand. Support for timing debugging is optimal. The delivery of diverse timing parameters allows a highly detailed analysis. As required, evaluation of results can be performed by T1 components on the target system. Thus, T1 performs not only pure measurements but also high-level timing analysis. Timing constraints can be continually monitored and any violations are then clearly identified.

T1 GROWS WITH YOUR NEEDS

Many software releases arise up until delivery of a production ECU. Additions and changes are commonplace. T1 accompanies the system analysis from the start and highlights bottlenecks early in the development process. The consequence is an optimisation process that will be your partner through every phase of the project.

FROM PROTOTYPE TO PRODUCTION ECU

T1 is wherever you need it. Whether starting with module tests and then progressing to the automated test environment (e.g. HIL) or in the finished ECU, T1 produces exact execution time measurements in each phase of the project, even in the production ECU. In this way, measurement data can be obtained, for example via CAN, with very modest demands on the transfer bandwidth.

OPTIMISATION

It is quite common to find that a functionally perfect design suffers, in spite of enormous CPU reserves, timing failures. T1 immediately shows where to start. During the repair of an overloaded system, T1 helps to find optimisation opportunities and to evaluate all changes.

DEBUGGING

Experience has shown that, as a rule, the investigation of timing problems start in the wrong place, with the functional behaviour. Cause and effect of a timing problem are often far apart. "Digging around" with a debugger can consume weeks. T1 brings about a drastic reduction in the time required to solve timing problems.

DOCUMENTATION

Standards such as ISO 26262 or DO 178-B/C require clear and thorough documentation. T1 produces fully automatic reports of timing behaviour on demand. Once configured, the required documents can be obtained at the press of a button.

ANALYSIS AND UNDERSTANDING OF RUN-TIMES

T1 grants insights into the system. Sequences are made visible and easy to understand. Timing problems are recognised in time and solved using the visualisation.

T1 IS MODULAR

T1 is composed of various components and provides the users with diverse analysis tools. As the complexity and analysis tasks grow, so T1 grows with them. In this way, key development milestones are verified. Delivery delays due to timing problems are prevented by T1.

DEADLINES?

CPU-LOAD?

T1-Adaption

T1-Integratior

T1-Usage

ISO 26262 COMPLIANT?

T1.scope T1.cont T1.flex

T1.delay

T1 ENSURES "SOP" FOR PRODUCTION ECUs

T1 assists with all phases of timing verification. T1 is particularly renowned for its value in the integration phase of production ECUS, when various software components come together and the system is on the test bed.

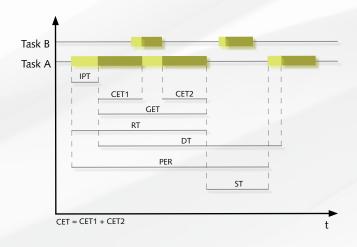
TIMING?

T1 INTEGRATION IN A CUSTOMER PROJECT

Leaving nothing to chance, GLIWA GmbH integrates T1 on site with the customer:

- **T1-Adaption:** T1 is adapted as required, for processor, RTOS, compiler and interface. Many variants are available "out of the box" (see datasheet on reverse).
- **T1-Integration:** T1 is directly integrated into the customer project. The team of GLIWA experts supply engineering services to achieve this integration. This provides the customer with a guaranteed Plug & Play.
- **T1-Usage:** T1 measurements are made from now on.

T1 DEPLOYMENT IN MULTIPROCESSOR SYSTEMS


T1 is already installed in system with several cores. This applies to systems with several CPUs as well as multi-core architectures.

T1 is being continually developed with new features for multi-core systems.

PROPERTIES MEASURED BY T1

This table gives an overview of the most used values in the field of timing analysis:

ABREVIATION	DESCRIPTION
IPT	initial pending time
CET	core execution time
GET	gross execution time
RT	response time
DT	delta time
PER	period
ST	slack time
CPU	CPU load
JIT	jitter

BASIC FUNCTIONS

briste i onerions			
Project explorer	2 views, system and application view, incl. code viewer		
Project import	Source, object code such as ELF files with debug info		
HTML reports	Reports of all timing info with images in chosen font / colour		
CSV reports	CSV reports formatted Ws, XXms, YYus, ZZns, times: ns, μs, ms, s		
Report configuration	Freely configurable, incl. summary with graphic		
Save report	Yes, projects and configurations in T1 project files		
Symbol resolver	Extracted from addresses, symbols and debug information		
Symbol search	Search for any symbol		
ELF info dialogue	Dialogue box for ELF file data		
Connection logger	Logs all T1 CAN messages (RX and TX)		
Send traces	Compress all data into a Zip archive in an email		

(T1) SCOPE

THE SW OSCILLOSCOPE

T1.scope is the basic component. As with an oscilloscope display, the timing of tasks is graphically represented on the time axis. Incidences of interrupts or arbitrary events are visualised in the same way. The focus of the measurement can be freely configured.

The supervision of access to particular data is equally possible. With simple mouse gestures, regions can be selected and analysed. The data is prepared in the background and collected together with relevant results. T1.scope offers many additional functions.

Measurement results can be exported as HTML files, for example, and communicated to project partners by email for graphical and quantitative evaluation.

FUNCTIONS

FUNCTIONS				
Generic	Synchronised views with auto-update across various windows			
Trace view (basic functions)	Graphical representation of timing events with scheduling, stopwatches and data flows, user events, constraints and highlighting of constraint violations, overhead measurement, min and max values, CPU load diagram, comments/ bookmarks, CPU load for tasks and for the entire system, user time grids			
Trace view (Additional functions)	Zoom, mark, scale, select, Look & Feel, various tree representations etc.			
Save & Print	Binary trace format, text traces all with additional information			
Measured values	CET, GET, IPT, RT, DT, PER, ST, PRE, JIT, CPU-Load, occurance			
Charts	Pie chart, histograms, bar charts, statistical representation incl. extrapolated values			
Corrections	Corrections and compensation for measurement overhead			
Trigger Trigger measurement of desired intervals				
Trace download	Permanent or selective trace download			

ALWAYS UP-TO-DATE WITH T1

T1 is being continually developed to meet evolving customer needs. This datasheet is just an overview. T1 can generally be integrated into any environment (CPU, RTOS, tool environment, hardware interface etc.).

HIGHLY FLEXIBLE ON-TARGET TIMING MEASUREMENT

T1.flex is, among other things, the tool of choice for completely unexpected effects, allowing instrumentation to be inserted at run-time. This allows code timing measurements to be performed without having instrumented in advance. This means that the software does not have to be recompiled or flashed!

T1.flex exploits special features of the controller and its hardware architecture. When timing problems emerge, such ad hoc measurement results can be generated. This process makes T1 a powerful and highly flexible analysis system that proves itself most valuable at the most critical phases of your project.

FUNCTIONS

SWF	Stopwatch on function, also as a focus measurement		
swc	Stopwatch on code segment, also as a focus measurement		
CAF	Code access frequency		
DAF	Data access frequency		
DAF mit RMC/RMF	Data access frequency with restriction to code segment or function		
UED	User event on data, user event on access to data		
UED mit RMC/RMF	User event on data with restriction to code segment or function		
UEC	User event on code access,		
Symbol groups	Configure symbol groups		
Address range	Start-end region, code addr., symbol name, source code region,		
STA	Set stop trigger on access to code or data		
STA immediate	Directly set a stop trigger to a specific address		
NCA	next code access, report jump destinations		
СРС	Code path counter, for example for loop bound analysis		
Other	Source viewer, save, flexible stopwatches, flexible configuration and more		

(1) delay

FUNCTIONAL WILDCARDS

In the lifecycle of a project, function groups emerge sequentially. With T1.delay, users can load the CPU using delays in place of the missing functions. In this way, system timing can be estimated before the functional code is fully available. For large project groups, in particular, and for collaboration with suppliers, T1.delay becomes an indispensable cornerstone of planning.

FUNCTIONS

Delay function	Produces artificial delay and represents place-holder for function code yet to be added	
Auto-increment	Delay can be automatically incremented. This allows empirical boundaries to be determined	
Reset DLY	Reset DeLaY resets the delay function	

VERIFICATION AT THE SYSTEM AND CODE LEVEL

T1.test provides fully automatic timing measurement. The integration with the test environment is achieved using XML scripts via the .NET, .exe or Python interface. The deployment of timing verification in functional tests (e.g. HIL) is particularly efficient. In this way, both functional and timing properties can be verified at the same time. T1 also generates the appropriate documentation of the timing analysis.

FUNCTIONS	
Start T1	Starts T1 from an external Tool
Start T1 script	Starts a T1 script from an external tool
Stop T1	Stops T1 from an external tool
Auto-log	Generates a log file recording the automation for documentation

Overview of automated commands (excerpt):

Connection start/stop, start/stop measurement, auto-download (permanent, wait for trigger, stop), HTML or CSV report generation, load project, trace load/save, configure/update delays, reset/start/ stop delay increment, set directory (for load/save), constraint check, set application feature mask, perform T1.flex measurements (SWF, SWC, CAF or DAF), measurement of symbol groups with or without focus.

CONTINUAL ON-TARGET TIMING ANALYSIS

In contrast to T1.scope, **T1.cont performs calculations on the target**, an ideal process for timing measurement over long durations. All tasks and interrupts are included. Minimum and maximum timing values can be continuously collected and, using "focus measurements" also average (mean) values. Optional constraints permit the early detection of violations of freely definable limits. A constraint violation triggers a T1.scope visualisation and/or a user-defined callback function. Using a callback, the application can take exactly the appropriate measures, such as recording the problem in the error log. In this way, even timing problems can be uncovered with minimal effort, even when they occur only rarely in long tests.

FUNCTIONS		
Results	CET, GET, IPT, RT, DT, ST, CPU-Load	
Stopwatches	Continual min/max CET/GET also dynamic T1.flex Stopwatches	
Dynamic configuration	Online reconfiguration of computation values, results, supervised constraints	
Data presentation	graphical or tabular results presentation	
Save / Load	T1.cont trace data for further analysis	
Focus measurement	Focus on specific timing values and defined intervals	
Focus groups	Focus measurement groups of elements, such as all tasks, ISRs, etc.	
Reset	Reset results	
Constraint On/Off	Targetted On/Off of the constraint	
Analysis On/Off	Targetted On/Off of event analysis and computation	
Live status	Live status monitoring with the GUI	

COMPILER			
Supplier	Compiler	Core	
Altium	Tasking	C166 and TriCore	
Atmel	AVR/(X)MEGA	AVR (X)MEGA	
Freescale	Metrowerks	CPU12(X), power archit. and e200	
Fujitsu Softune		F ² M-16	
GNU	gcc	TriCore, (X)MEGA, ARM Cortex M0/ M3, dsPIC	
Green Hills Software	GHS Compiler	e200, V850e1/e2	
Texas Instruments	TI Compiler	ARM Cortex M3, ARM Cortex R4	

FILE FORM	FORMAT IMPORT/EXPORT			
Туре	Description			
binary	Timing and trace data			
txt	Trace data			
csv	Timing and trace data			
html	Timing data, system configuration			
ATF	ALL-TIMES timing data (based on EU ALL-TIMES project)			
CTF	Common Timing Format, comprehensive platform			
OT1	Open Timing Format			
elf	ELF (Executable and Linkable Format)			
хтс	Interface to the AbsInt tool suite aiT			
SymTA/S XML	Interface to the Symtavision tool suite SymTA/S			
INCHRON XML	Interface to the INCHRON tool suite			
T1 script	Timing and trace data			
Artop	Interface to ARTime			

PORTS / INTERFACES

CONTROLLER				
Supplier	Core	Controller	Remarks	
Atmel	AVR MEGA	ATmega32,	T1.flex not yet available	
Atmel	AVR XMEGA	ATxmega32,	T1.flex not yet available	
Freescale	CPU12/CPU12X	HC12/S12/S12X	T1.flex not yet available	
Freescale	e200	MPC5xxx	full support	
Freescale	Power Architektur	MPC5xx	full support	
Fujitsu	F ² MC-16	F ² MC-16	T1.flex not yet available	
Infineon	TriCore 1.3.1	ТС1797,	full support	
Infineon	TriCore 1.6	TC1798,	full support	
Infineon	TriCore, AURIX	MultiCore	full support	
Infineon	C166 v1/2	(X)C16x / ST10	full support	
Microchip	dsPIC	dsPIC33FJ,	T1.flex not yet available	
NXP	Cortex M0	LPC11xx	T1.flex not yet available	
NXP	Cortex M3	LPC17xx	full support	
Renesas	V850e1 / e2 (dual)	V850, PX4,	full support	
Texas Instr.	Cortex M3	TMS570	full support	
Texas Instr.	Cortex R4	TMS570	full support	

_	_	_	_	
D	т	\mathbf{O}	C	
- 1 \		\mathbf{U}		

110

Supplier	Name	Supplier	Name
GLIWA GmbH	gliwOS	Elektrobit	ProOSEK, OEKtime
ETAS	ERCOSEK	Elektrobit	tresOS
 vector	osCAN	ETAS	RTA-OSEK
Delphi	PharOS	KPIT Cummins	KPIT
Micriµm	μC/OS-II	Custom OS	multiple

Gliwa GmbH possesses years of experience in the optimisation of timing properties. Many customers already profit from coaching projects. In this way, valuable know-how is introduced into the organisation.

WE DEVELOP PRECISION

www.gliwa.com

GLIWA GmbH embedded systems Winterstr. 9a D-82362 Weilheim i.OB. fon +49 - 881 - 13 85 22 - 0 fax +49 - 881 - 13 85 22 - 99 mail info@gliwa.com CEO Peter Gliwa Amtsgericht München | HRB 167925 VAT-no. DE226607137