
Virtualisation in Use 
An AURIX/T1 demo 

Dipl.-Ing. (BA) Peter Gliwa, Gliwa GmbH 

Dipl.-Ing. Jens Harnisch, Infineon Technologies AG 



Contents 

• Motivation: analyse variants of a function 

 

• How it works: virtual function substitution 

 

• How it works: virtual function migration 

 

• Summary 



Use case: analyse function variants 

• Need to gather actual performance data in order to 

select between a number of variants of a function 

– Performance of the function itself 

– Impact of the function 

• stack usage 

• shared memory conflicts 

• cache usage 

 

• A build, flash and run cycle takes several hours 

 

• Virtual function substitution allows a large number 

of variants to be trialled with one build 



Use case: calculate prime numbers 

• Any computationally intensive function will 

demonstrate the principles. 

 

• Naïve algorithm tests successive number N to see 

if they have a factor such that 1 < factor <= √N 

 

• Alternative algorithm uses lazy, sparse Sieve of 

Eratosthenes with fewer arithmetic operations but 

more memory accesses 

 

• Which performs better in a real system? 



Use case: environment 

• Infineon AURIX with 3 TriCore CPUs: 

– CPU0, V1.6E (Efficiency) core, mostly event-driven 

schedule 

– CPU1, V1.6P (Performance) core, mostly periodic 

schedule 

– CPU2, V1.6P (Performance) core, reserved in this demo 

 

• Tasking v4.1r1 TriCore compiler 

 

• Gliwa T1 triggers demo phases and visualises 

timing effects 



Function substitution disabled 

task code 

naivePrimes 

CALL 

RETURN 



Function substitution enabled 

task code 

naivePrimes 

CALL 

RETURN 

BP handler 

sievePrimes 

RFM 
Modify own return address 

Breakpoint 



8 8 

Used for example analysis: T1 timing suite 

• Runtime measuring, debugging, 

verification and optimisation 

• System and code level timing analysis 

• Oscilloscope-like visualisation of 

runtime scenarios 

• Net run times for tasks, interrupts, 

functions or any code fragment 

• CPU load measurement 

• On-target measurement and 

supervision 

• On-line instrumentation of code 

• Easy connection to target hardware – 

no HW modification required 

• Interfaces to static code- and 

scheduling analysis tools 

• Embedded in AUTOSAR processes 



Results of substitution on CPU1 

• Naïve Primes max CET = 825µs 

• Sieve Primes max CET = 560µs 

 32% reduction in execution time 



Use case: analyse multicore load balance 

• If we can substitute one function with another, we 

can just as well migrate the whole function to 

another core 

 

• The optimised prime calculator is fast enough to 

run on CPU0’s slower 1.6E core 

 

• So let us migrate sievePrimes to CPU0, freeing 

CPU load on CPU1 



Function migration 

task code 

naivePrimes 

RETURN 

BP handler 

Signal CPU0 

RFM 
Modify return address 

sievePrimes 

CPU1 CPU0 

Interrupt 

CALL 

Breakpoint 



Results of migration from CPU1 to CPU0 



Migration results 2 

• Sieve Primes on CPU1 max CET = 560µs 

 

• Sieve Primes on CPU0 max CET = 680µs 

– CPU load increased by about 35% 

 

• CPU0 can manage the extra CPU load 

 

• Prioritised interrupts mean that CPU0 is unaffected with 

regard to previous interrupts, which have higher priority 

than the migration interrupt 

 

13 



Summary of example, outlook 

• Using simple HW features, we can 

– substitute one function with another 

– migrate a function from one core to another 

 

• The replacement function could equally be compiled, 

located and loaded to RAM while the system is operating 

 

14 


